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Abstract 

This work evaluates and defends the idea that decision-theoretic representation theorems 

can play an important role in showing how credences and utilities can be characterised, 

at least in large part, in terms of their connection with preferences. Roughly, a decision-

theoretic representation theorem tells us that if an agent’s preferences satisfy constraints 

C, then that agent can be represented as maximising her expected utility under a unique 

set of credences (modelled by a credence function ℬel) and utilities (modelled by a utility 

function 𝒟es). Such theorems have been thought by many to not only show how cre-

dences and utilities can be understood via their relation to preferences, but also to show 

how credences and utilities can be naturalised—that is, characterised in wholly non-men-

tal, non-intentional, and non-normative terms. 

There are two broad questions that are addressed. The first (and more specific) ques-

tion is whether any version of characterisational representationism, based on one of the 

representation theorems that are currently available to us, will be of much use in directly 

advancing the long-standing project of showing how representational mental states can 

exist within the natural world. I answer this first question in the negative: no current rep-

resentation theorem lends itself to a plausible and naturalistic interpretation suitable for 

the goal of reducing facts about credences and utilities to a naturalistic base. A naturalistic 

variety of characterisational representationism will have to await a new kind of represen-

tation theorem, quite distinct from any which have yet been developed. 

The second question is whether characterisational representationism in any form (nat-

uralistic or otherwise) is a viable position—whether, in particular, there is any value to 

developing representation theorems with the goal of characterising what it is to have cre-

dences and utilities in mind. This I answer in the affirmative. In particular, I defend a 

weak version of characterisational representationism against a number of philosophical 

critiques. With that in mind, I also argue that there are serious drawbacks with the partic-

ular theorems that decision theorists have developed thus far; particularly those which 

have been developed within the four basic formal frameworks developed by Savage, 

Anscombe and Aumann, Jeffrey, and Ramsey. 

In the final part of the work, however, I develop a new representation theorem, which 

I argue goes some of the way towards resolving the most troubling issues associated with 

earlier theorems. I first show how to construct a theorem which is ontologically similar 



to Jeffrey’s, but formally more similar to Ramsey’s—but which does not suffer from the 

infamous problems associated with Ramsey’s notion of ethical neutrality, and which has 

stronger uniqueness results than Jeffrey’s theorem. Furthermore, it is argued that the new 

theorem’s preference conditions are descriptively reasonable, even for ordinary agents, 

and that the credence and utility functions associated with this theorem are capable of 

representing a wide range of non-ideal agents—including those who: (i) might have cre-

dences and utilities only towards non-specific propositions, (ii) are probabilistically inco-

herent, (iii) are deductively fallible, and (iv) have distinct credences and utilities towards log-

ically equivalent propositions. 

  



 

 

A Note on Notation 

Throughout this thesis, I have maintained a consistent notational scheme, which I have 

summarised here for convenience. Sections where the relevant notions are introduced and 

discussed are included in the parentheses. 

 

f  Arbitrary function 

ℬel  Function intended to represent credences (§2.1, §2.5) 

𝒟es  Function intended to represent utilities (§2.1, §2.5) 

𝒫r Probability function (need not be intended to represent credences) 

(Definition 2.2) 

ℰ𝒰 Expected utility function (§2.4) 

≽  Preference relation (Definition 2.5) 

≽b  Relative credence relation (Definition 2.8) 

≽x Arbitrary binary relation 

𝒳 = {x, y, z, …}  Arbitrary set 

𝒲 = {w1, w2, w3, …}  Set of possibilities; usually a set of possible worlds 

𝒫 = {P, Q, R, …}  Set of propositions; in some cases a set of subsets of 𝒲 

𝒮 = {s1, s2, s3, …}  Set of states; a partition of some possibility space 𝒲 (§5.1.1) 

ℰ = {E1, E2, E3, …}  Set of events; i.e., a set of subsets of 𝒮 (§5.1.1) 

𝒪 = {o1, o2, o3, …}  Set of outcomes; usually a set of propositions (§5.1.1) 

𝒜’ = {α, β, γ, …} Set of acts (§5.1.1), or intentions to act (§5.4) 

𝒜 = {ℱ, 𝒢, ℋ, …}  Set of act-functions; i.e., functions from some 𝒮′ ⊆ 𝒮 into some 𝒪 

(§5.1.1, Definition 5.4, Appendix B) 

ℳ𝒳 = {ℒ1, ℒ2, ℒ3, …}  Set of all lottery-functions on a set 𝒳; i.e., a set of functions from 𝒳 

into [0, 1] (Definition 6.1, Definition 6.2) 

ℋ = {𝒽1, 𝒽2, 𝒽3, …}  Set of horse-functions; i.e., functions from some 𝒮′ ⊆ 𝒮 into some 

ℳ𝒪 (§6.1.1) 

𝒢 ⊆ 𝒪 × 𝒫 × 𝒪  Set of (two-outcome) gambles; members usually represented (o1, P; 

o2) (§7.1, §8.1.1) 

𝒩  Set of null events (Definition 5.10) or null propositions (Definition 

6.4) 
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CHAPTER ONE 

Beliefs, Credences, and the Naturalisation of 

Intentionality 

In his ‘Radical Interpretation’ (1974), David Lewis sets us a challenge: an ordinary person 

named Karl is the subject of our investigation, and the task is to determine what he 

believes and desires without presupposing any particular claims to that effect. We have 

at our disposal all the facts we could ever want about Karl—about his upbringing, 

neurobiological constitution, ancestral history, and external societal context—except for 

those facts which directly inform us as to the contents of his beliefs and desires. The 

challenge seems in principle satisfiable; it’s unlikely that it’s a brute fact about Karl that 

he believes and desires as he does, so if he believes that P or desires that Q, such things 

should supervene on other truths which are not directly about his attitudes. 

Beliefs and desires are centrally important to the folk conception of the mind, so it 

would be very useful to develop a non-circular characterisation of when a subject believes 

that P and desires that Q. We can refer to this as a characterisation project; it is, by all 

accounts, still very much incomplete. But Lewis—like many others who have accepted 

the same challenge—engages upon a yet more ambitious project still: to naturalise beliefs 

and desires, by accounting for what it is to be in such states whilst appealing only to non-

intentional, non-mental, and non-normative factors. We can refer to this a naturalisation 

project—it is an instance of a characterisation project, with an added twist. As a physi-

calist, Lewis took his task to be the explanation of beliefs and desires in entirely physical 

terms: “Given P, the facts about Karl as a physical system, solve for the rest” (1974, 

331).1 For those engaged in the naturalisation project, it is not enough to just say in non-

cognate terms what it is to have beliefs and desires; rather, we need to show how these 

attitudes fit within the normal causal order of physical objects and natural properties. Be-

liefs and desires are intentional states—they are about things—and intentionality just 

does not seem to be a metaphysically fundamental phenomena. Jerry Fodor nicely sums 

up the intuitions here: 

 

 
1 Lewis also hoped to supply a naturalistic account of what Karl means by the terms and sentences he 

uses, discussion of which would take us well beyond the scope of this work. 
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I suppose that sooner or later the physicists will complete the catalogue they’ve been com-

piling of the ultimate and irreducible properties of things. When they do, the likes of spin, 

charm, and charge will perhaps appear on their list. But aboutness surely won’t; intention-

ality simply doesn’t go that deep. (1987, 97) 

 

We ought, it seems, to be able to explain how the intentionality arises within a natural, 

and fundamentally non-intentional, world. 

I have so far cast these characterisation and naturalisation projects in terms of beliefs 

and desires, but like the rest of us, Karl presumably has partial beliefs and different 

strengths of desire as well. As a well-informed individual, Karl is likely more confident 

that evolutionary theory is broadly correct than he is in the predictive accuracy of astrol-

ogy. When deciding upon an eatery, he feels a stronger desire for Turkish cuisine than for 

Korean. Furthermore, we appeal to these differences of degree when explaining Karl’s 

behaviour—e.g., in explaining why he opted for Turkish, and why he ignores the astrol-

ogy section of the newspaper. Indeed, inasmuch as we are already willing to accept that 

Karl has propositional attitudes at all, it seems that we can take it for granted that some 

of these attitudes come in degrees. At the very least, ordinary agents have credences (i.e., 

degrees of belief) and utilities (i.e., strengths of desire). Gradation is an important—per-

haps ineliminable—part of the ordinary, folk conception of the mind, and if we are not 

eliminativists about the folk categories of belief and desire then we ought not to be elim-

inativists about credences and utilities either. 

Historically, philosophers who have engaged in anything like a characterisation or nat-

uralisation project have centred their attention on beliefs and, to a lesser extent, the other 

non-graded propositional attitudes.2 Progress on this front, however, has been slow in 

recent decades. The end of the 20th Century saw the development of the representational 

theory of mind (Putnam 1980, and esp. Fodor 1975), which (roughly) takes propositional 

attitudes to be relations that a subject bears to representational structures stored some-

where in the head that play a particular kind of computational role. With that theory came 

a large amount of work on the naturalisation of conceptual content. However, the three 

most influential views which have been developed—namely, the causal-informational 

 
2 Like any other ‘big projects’ in philosophy, there will be some who see naturalisation projects and the 

broader characterisation projects as misguided from the outset. Though it is very much a minority position, 

some believe that intentional and semantic facts may be metaphysically basic (Kearns and Magidor 2012). 

Others might deny that propositional attitudes of the kind that folk psychology refers to even exist (Quine 

1960, Churchland 1981, Stitch 1992), or that credences may be (finitely) indefinable (as Eriksson and Hájek 

2007 seem to advocate). A response to these positions is beyond the scope of this work—one has to start 

somewhere, and a realist, non-primitivist take on the graded attitudes seems about as good as any. I am 

sympathetic to the idea that credences and utilities cannot be given a fully naturalistic and finite character-

isation, but the best argument for that position rests on the consistent failure of attempts to provide such a 

characterisation, and we are hardly at the stage where giving up is warranted. 
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theories of Dretske (1981) and Fodor (1987), teleosemantics (Millikan 1989), and 

conceptual role semantics (Block 1986)—still suffer from unresolved problems 

recognised since their inception. Worse still, it is unclear whether and how these 

approaches to understanding belief—including the background theory of the 

propositional attitudes—might be augmented or modified to accommodate the graded 

attitudes.3 Major alternative approaches (e.g., Davidson 1973, Stalnaker 1984, Dennett 

1989) retain the emphasis on belief—allusions are sometimes made towards an account 

of credences and utilities, but details are sparse or non-existent. 

A shift in focus may prove helpful: perhaps progress is to be found by accounting first 

for the graded attitudes, and then seeing what this might teach us about the nature of the 

non-graded attitudes—if beliefs and desires are still considered important once we have 

accounted for credences and utilities (cf. Jeffrey 1970, Christensen 2004). Indeed the fo-

cus on beliefs in particular is surprising given the long-standing and common view that 

we should ultimately understand beliefs in terms of credences.4 If something like this is 

true, then our attention should presumably be directed in the first instance towards an 

understanding of the graded attitudes. And even if it is not true, both the characterisation 

and naturalisation projects as applied to credences and utilities (as opposed to beliefs and 

desires) are independently important ventures worthy of philosophical attention. 

In general, philosophers have had much to say on what our credences and utilities 

should be like at a given time, how we should change them over time in response to 

learning, and how they ought to influence our decisions. We read, for example, that our 

credences ought to obey certain ‘coherence’ conditions, and that our utilities shouldn’t be 

intransitive. And as just noted, there is also a limited amount of work on how credences 

relate to beliefs. But very little has been said on just what credences and utilities are, on 

what it is for an agent to have the credences and utilities that they do. 

More specifically, the issue here is to characterise the conditions under which an agent 

counts as being in such-and-such a credence or utility state. It is orthodox to hold that 

beliefs and desires are binary relations between a subject at a time and a proposition. I 

suspect that most would be happy to say something similar about the graded attitudes. 

That is, it seems plausible to say that a credence of x in P is a ternary relation between a 

subject at a time, a degree (represented by some value, x), and the proposition P (cf. Huber 

2009, 2). Likewise for utilities. The real philosophical meat lies in specifying the condi-

tions under which an agent stands in such a relationship—and whether those conditions 

can be stated in entirely naturalistic terms. 

 
3 I discuss these issues further in Chapter 4. 

4 See (Eriksson and Hájek 2007, 206-7) for reasons in favour of this view. One idea here is the straight-

forward version of the Lockean thesis, that to believe that P is simply to have a sufficiently high credence 

in P (see Foley 1992, Hawthorne 2009). But there are many other options for reducing beliefs to credences 

(e.g., Weatherson 2005, 2012a, forthcoming, Clarke 2013). 
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A small amount of discussion does exist on attempts to characterise credences and 

utilities. As a rule, inasmuch as philosophers have engaged with this project at all, the 

general strategy has been to explain these attitudes more or less wholly in terms of pref-

erences. The famous betting interpretation, despite numerous critiques, remains a peren-

nially popular instance of this strategy (for recent defences, see Williamson 2010, Shafer 

2011). Likewise for some interpretivist views, according to which, as Donald Davidson 

puts it, “Subjective probabilities [i.e., credences] and quantified desires [i.e., utilities] are 

… theoretical constructs whose function is to relate and explain simple preferences” 

(2004).5 

Exactly what is meant by ‘preference’ here is something we will discuss in more detail 

below (see §2.2). A common idea, reasonably standard amongst those whose work cen-

tres around decision and game theory, is that preferences can be understood behaviour-

ally: an agent S’s preference ranking is supposed to more or less directly encode her be-

havioural dispositions (Samuelson 1938), or at least possess very strong links to those 

dispositions (as suggested for example by Davidson 1990, 317), such that we can deter-

mine S’s preferences given sufficient observation of her behaviour. If this is true, then a 

characterisation of credences and utilities in terms of preferences points the way to a nat-

uralisation of those attitudes. This goal, of course, is often in the background (and some-

times in the foreground) as a key motivation behind preference-based approaches to char-

acterising credences and utilities. To the extent that the notion of preference is itself 

naturalistically kosher, or at least more directly amenable to naturalisation than the inten-

tional states with which we began, then, if we could characterise credences and utilities 

in terms of preferences, we would be well placed to supply a fully naturalistic account of 

two important—and perhaps even basic—intentional attitudes.6 

To many, the most promising path for developing a preference-based characterisation 

of credences and utilities involves the appeal to one or another of the numerous represen-

tation theorems which have been developed for classical expected utility (CEU) theory. 

To gloss over several important details, which we will return to below, these theorems 

are generally taken to imply something along the following lines: 

 

If an agent’s preferences satisfy constraints C, then that agent can be represented as max-

imising her expected utility under a unique set of credences (modelled by a probability 

function ℬel) and utilities (modelled by a utility function 𝒟es) 

 

 
5 See §4.2 for more discussion on interpretivism, including versions of the position which do not char-

acterise credences and utilities solely in terms of preferences. 

6 To be clear, there are many kinds of intentional states, so to account for just credences and utilities is 

by no means to account for intentionality across the board. It may turn out, however, to be a particularly 

important part of the overall naturalisation project—especially if beliefs and desires reduce to graded atti-

tudes, and linguistic meanings depend on speakers’ attitudes. 
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If we assume that ordinary agents satisfy C, and somehow establish a close connection 

between how the agent can be represented and how she in fact is, then we appear to be 

well on our way to giving a preference-based account of what credences and utilities are: 

ℬel represents her credences, 𝒟es represents her utilities, and to have credences ℬel and 

utilities 𝒟es is just to have preferences which can be represented as such. At least, that is 

a very straightforward (and ultimately very flawed) version of the idea—as we will see, 

there are plenty of modifications to be made, but the gist of the view should be clear 

enough for now. In this sense, representation theorems are often seen as playing a central 

role in the conceptual foundations of decision theory and epistemology: they help to char-

acterise the very notions that decision theorists and epistemologists are theorising about. 

Representation theorems also exist for so-called non-classical utility (NCU) theories 

of decision-making, or theories which deviate from the classical expected utility norms.7 

Examples of such theories include, amongst many others, cumulative prospect theory 

(Tversky and Kahneman 1992), weighted utility theories (Fishburn 1983), Choquet ex-

pected utility models (Schmeidler 1989), risk-weighted expected utility theory (Buchak 

2013), and maxmin expected utility theory (Alon and Schmeidler 2014). The potential 

application of NCU theorems in the preference-based characterisation of credences and 

utilities has been largely ignored by philosophers to date, though it is a lively project 

within other disciplines. 

As will become clear below, I doubt that that credences and utilities can be understood 

solely in terms of preferences. However, let us use preference functionalism for the 

weaker (and more plausible) view that credences and utilities ought to be characterised at 

least in large part in terms of preferences. This view has a lot more going for it: the 

standard for the past few decades has been to understand mental states in terms of what 

they do—and if credences and utilities are supposed to do anything, they are involved in 

the explanation of our preferences. It is worth noting also that preference functionalism 

is not an inherently anti-realist or behaviourist position (cf. §4.5); it should be treated as 

neutral with respect to whether credences are preference states, or if credences are to be 

functionally characterised (partly) in terms of the preference patterns they give rise to.  

Furthermore, let us use characterisational representationism for the particular variety 

of preference functionalism whereby decision-theoretic representation theorems are taken 

to play a centrally important role in showing how credences and utilities can ultimately 

be characterised, at least in large part, in terms of preferences. (Characterisational repre-

sentationism will be discussed in depth in Chapter 3 and Chapter 4.) For philosophical 

discussions friendly to the view, see (Ramsey 1931), (Savage 1954), (de Finetti 1964, 

1974), (Anscombe and Aumann 1963), (Harsanyi 1977), (Eells 1982), (Jeffrey 1968, 

1990), (Davidson 1980, 1990, 2004), (Pettit 1991), (Maher 1993, 1997), and (Schwarz 

2014b). Representation theorems also appear to be in the background of Lewis’ own 

 
7 NCU theorems and CEU theorems are distinguished more thoroughly in §2.4. 

file:///C:/Users/u4874222/Dropbox/PhD%20Writing/%5b15.07.02%5d%20Representation%20Theorems%20and%20the%20Grounds%20of%20Intentionality.docx%23_3.3_How_decision-theoretic
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sketch for deriving the intentional facts about Karl from the set of all basic physical facts 

(see §4.2). 

Characterisational representationism is the most common variety of preference func-

tionalism amongst contemporary philosophers, and a common view simpliciter—so much 

so that Colin Howson and Peter Urbach describe it as having become “so dominant … 

that it is fair to call it now the orthodox account” (2005, 57). This is especially true in 

economics and decision-theoretic psychology, where something like characterisational 

representationism is more or less an unquestioned orthodoxy. The influence of the posi-

tion holds even despite a number of recent sceptical discussions; e.g., (Hampton 1994), 

(Joyce 1999, Ch. 3), (Christensen 2001, 2004), (Howson and Urbach 2005, Ch. 3), 

(Eriksson and Hájek 2007), (Easwaran 2014), (Dogramaci forthcoming), and especially 

(Meacham and Weisberg 2011). The main worries raised by these authors are discussed 

below, where I argue that they don’t give us sufficient grounds for rejecting characterisa-

tional representationism tout court—though they do give us reasons to reject very strong 

and simplistic versions of the view. 

In this work, I will evaluate the status of characterisational representationism. There 

are two main questions that I want to address. The first (and more specific) question is 

whether characterisational representationism will be of much use in directly advancing 

the naturalisation project, given the theorems that we currently have available—that is, 

whether we might appeal to any of the representation theorems we have now in providing 

an entirely non-intentional and non-mental account of what it is to have such-and-such 

credences and utilities.  

I answer this first question in the negative: no current representation theorem lends 

itself to a plausible and naturalistic interpretation suitable for the goal of reducing facts 

about credences and utilities to a naturalistic base. My argument for this, moreover, is not 

grounded in concerns over the philosophical merits of (pseudo-)behaviourism or anti-

realist construals of propositional attitudes, which have motivated much of the scepticism 

that has been directed towards characterisational representationism. Most representation 

theorems simply don’t lend themselves well to a naturalistic interpretation, and where 

they do, it is a mistake to think that they can be given a behavioural or otherwise non-

intentional interpretation inasmuch as their ℬel and 𝒟es functions are to plausibly model 

decision-makers’ credences and utilities. As a consequence of how objects of choice are 

formalised in our current systems, a naturalistic interpretation of any current theorem—

to whatever extent it may exist—comes at the cost of breaking any plausible connection 

between the established representation and the mental facts of the matter. Furthermore, 

the most general framework we have for connecting credences and utilities to behaviour 

is incapable of capturing those attitudes for a very wide range of important propositions 

(towards which we almost certainly do have credences and utilities). A naturalistic variety 

of characterisational representationism will have to await a new kind of representation 

theorem, quite distinct from any which have yet been developed. 
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The second question is whether characterisational representationism in any form (nat-

uralistic or otherwise) is a viable position—whether, in particular, there is any value to 

developing representation theorems with the goal of characterising what it is to have cre-

dences and utilities in mind. This I answer in the affirmative. In particular, I defend a 

weak version of characterisational representationism against a number of philosophical 

critiques. With that in mind, I also argue that there are serious drawbacks with the partic-

ular theorems that decision theorists have developed thus far. In the final part of the work, 

however, I develop a new representation theorem, which I argue goes some of the way 

towards resolving the most troubling issues associated with earlier theorems. 

1.1 Structure of the discussion 

In the next chapter, I will introduce and clarify the technical concepts and vocabulary 

used throughout the rest of the thesis, including: a number of formal models for the rep-

resentation of credences, representation theorems, uniqueness theorems, and the interpre-

tations thereof.  

In Chapters 3 and 4, I give a partial defence of characterisational representationism 

from a number of sceptical critiques found in the recent philosophical literature. Chapter 

3 discusses in detail a common but naïve version of characterisational representation-

ism—what I call the classical theory—and then looks at where it goes wrong. The biggest 

concern with the classical theory is that it takes an anti-realist stance towards credences 

and utilities, treating them as mere redescriptions of preference patterns rather than inde-

pendently existing mental states in their own right. Other major concerns stem from the 

particular kinds of representation theorems that have traditionally been appealed to—viz., 

CEU theorems, developed for primarily normative purposes. The final section of Chapter 

3 outlines a number of desiderata that a representation theorem ought to satisfy if it is 

underlie a plausible version of characterisational representationism.  

Then, in Chapter 4, I argue that with the right kind of representation theorem—one 

which satisfies the stated desiderata—the central worries with classical characterisational 

representationism might be overcome. Indeed, when placed in comparison with alterna-

tives, a more sophisticated version of characterisational representationism based on an 

appropriate theorem has distinct advantages which should make it attractive to philoso-

phers seeking to understand the nature of our graded propositional attitudes. In particular, 

I argue that given the right theorem, characterisational representat-ionism should seem 

especially promising in helping us to pin down the intentional content of these attitudes. 

This is followed by a review of a large number of representation theorems in decision 

theory, with a focus on their viability as foundations for characterisational representation-

ism (naturalistic or otherwise). This is done in light of the desiderata developed in Chapter 

3. It is, in other words, an enquiry into whether the right kind of representation theorem 

currently exists. 



 

8 

 

 

Chapter 5 focuses on Savage’s theorem and the formal paradigm that he created; there, 

I find that the reliance on functions from states to outcomes (constituting these theorems’ 

formal representations of acts) leads to deep problems which limit the usefulness of all 

Savagean theorems—both for characterisational representationism and more generally. I 

also consider and reject the feasibility of a purely naturalistic understanding of acts and 

preferences, two basic notions involved in the interpretation of Savage-like theorems. 

Chapter 6 then considers two other broad classes of representation theorem: the lottery-

based framework (found in the theorems of von Neumann and Morgenstern, and 

Anscombe and Aumann) and the monoset framework (found in the Bolker-Jeffrey theo-

rem). These theorems, too, are found wanting, though for very different reasons. Finally, 

Chapter 7 evaluates Ramsey’s representation theorem. The well-known problem of ethi-

cal neutrality is raised, and it is argued that Ramsey’s assumption of the existence of 

ethically neutral propositions is not a mere idealisation that can be simply overlooked. 

Between them, Chapters 5 through to 7 cover the vast majority of representation the-

orems that have been developed over the past century. Jointly, they demonstrate that these 

theorems are not up to the task of founding a plausible and complete version of charac-

terisational representationism. There are five broad kinds of problems that arise, centred 

on the following themes:  

 

1. Satisfiability: whether a theorem T’s preference conditions (under a reasonable interpre-

tation) are satisfied (or approximately satisfied) by ordinary agents. 

2. Plausibility: whether, supposing that S satisfies T’s preference conditions, the resulting 

model of S’s credences, utilities, and decision-making procedure is intuitively and empir-

ically plausible. 

3. Uniqueness: whether the model of S’s credences is, in an interesting sense, unique. 

4. Circularity: whether any useful decision-theoretic interpretation of T depends on a prior 

specification of S’s credences and utilities.  

5. Naturalisability: whether the decision-theoretic interpretation of T involves an unavoida-

ble appeal to some intentional state or other. 

 

Issues surrounding the ‘naturalisability’ of a theorem are, of course, only applicable to 

those engaged in the naturalisation project. Problems regarding ‘circularity’ of course 

imply problems of ‘naturalisability’, but (as I will argue) some theorems suffer from the 

latter kind of problem without suffering from the former. The most common issue, which 

arises for each of the theorems discussed, is that they are representationally limited in a 

number of important respects; that is, they leave us with credence and utility functions 

which seem fundamentally incapable of modelling the actual credence and utility states 

of ordinary agents (i.e., an issue of plausibility). 

The final part of the work seeks to improve the state of characterisational representa-

tionism. Chapter 8 develops a new representation theorem aimed at resolving the worst 
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of the satisfiability, plausibility, uniqueness and circularity issues found with previous 

theorems—though it does this at the cost of an essential appeal to unreduced mental no-

tions. I first show how to construct a theorem which is ontologically similar to Jeffrey’s, but 

formally more similar to Ramsey’s—but which does not suffer from the infamous problems 

associated with Ramsey’s notion of ethical neutrality, and which has stronger uniqueness 

results than Jeffrey’s theorem. Furthermore, it is argued that the new theorem’s preference 

conditions are descriptively reasonable, even for ordinary agents, and that the credence and 

utility functions associated with this theorem are capable of a wide range of non-ideal 

agents—including those who: (i) might have credences and utilities only towards non-specific 

propositions, (ii) are probabilistically incoherent, (iii) are deductively fallible, and (iv) have 

distinct credences and utilities towards logically equivalent propositions.  

Finally, Chapter 9 is a summary of the thesis, and a look at the present state of charac-

terisational representationism and the naturalisation project. 



 

 

 

CHAPTER TWO 

Background 

The purpose of this chapter is to supply the terminological and conceptual background 

that will be needed for the rest of the work. §2.1 focuses on the notions of credence and 

utility, and their numerical representation, while §2.2 takes a closer look at the concept of 

preference. Then, in §2.3, I outline a very simple representation theorem for the measure-

ment of hardness and clarify the most basic notions (weak orderings, T-representation, 

uniqueness) involved in the statement of representation theorems in general. In §2.4, I 

look at decision-theoretic representation theorems in particular, outlining the key features 

of a typical classical expected utility (CEU) theorem and distinguishing them from non-

classical utility (NCU) theorems. Finally, in §2.5, I precisify the Decision-theoretic In-

terpretation of a representation theorem, which forms the basis for their philosophical 

application. 

2.1 Credences, utilities, and the representation thereof 

I will assume, without argument, a minimal realism about graded propositional attitudes; 

that is, ordinary agents in ordinary circumstances have, as an objective matter of fact, 

credences and utilities. Moreover, I will assume (pace Harman 1986, and Holton 

forthcoming) that credence talk is not a mere façon de parler for talk about outright be-

liefs, and likewise for utilities and desires, mutatis mutandis. 

Let us be clear on what this means. In all that follows, I will use ‘credences’ and ‘util-

ities’ to refer to the graded propositional attitudes that are the main subject of this work. 

It will also be helpful to distinguish two different senses in which beliefs can be graded. 

Consider the following ordinary language locutions: 

 

(1) John is certain that his fear of leprechauns won’t get the best of him this time. 

(2) Frank is unsure whether he is in the matrix. 

(3) I am 25% certain that I will have paid employment next year. 

(4) I am more confident that I have made a mistake somewhere than I am in the validity of 

this proof. 

(5) Bob is much more certain that Jack stole his cake than that Jill did. 
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These are all attributions of an attitude to a thinking subject; each refers to a kind of 

credence state. Examples (1) to (3) attribute what we might call absolute credence states, 

while (4) and (5) are attributions of a relative credence state (also sometimes called com-

parative beliefs or qualitative probabilities). A similar relative/absolute distinction exists 

between graded desire states. However, ordinary language already has a term for relative 

desirabilities—namely, ‘preference’ (in the mentalistic sense, to be discussed below). For 

this reason, ‘utilities’ will always refer to the absolute states. 

Ordinary language attributions of absolute credence states ascribe to an agent at a time 

an opinion regarding a proposition which comes with a particular level of confidence, 

where these different levels are usually marked out using one of a variety of terms, in-

cluding ‘certain’, ‘almost positive’, ‘fairly sure’, ‘unconfident’, and so on. Examples (1) 

to (3), and countless others, suggest that different absolute credence states can be individ-

uated via two factors: the proposition that the state is about, and the particular level of 

confidence that attaches to it. Thus, for example, being certain that P is a distinct state 

from being unsure whether P, as they involve different levels of confidence; and both of 

these states are distinct from being certain that Q, for distinct propositional relata P and 

Q. Similar points can be made with respect to utilities, mutatis mutandis. 

Relative credences are the kinds of states one might attribute through such phrases as 

‘I am more confident that I have made a mistake somewhere than I am in the validity of 

this proof’. Instead of attributing an absolute level of confidence to an agent, relative 

credence attributions ascribe a somewhat different kind of attitude—that of finding a 

given proposition more, less, or equally likely to another proposition. Examples like (5) 

also suggest that relative credence attributions can be used to convey not just ordinal 

information, but also information about relative strengths with which propositions are 

believed. 

The ubiquity of ordinary language attributions like (1) to (5) indicates that credences 

and utilities are not merely high-level theoretical constructs whose function is to relate 

and explain behavioural patterns, with no deep connection to any notions in folk psychol-

ogy and everyday attitude attributions. At most, we might say that, in academic contexts, 

credence and utility are semi-technical notions grounded thoroughly in the folk concep-

tion of the mind. There is of course room for the stipulation and development of technical 

notions in the psychological sciences, but those will not be of interest to us here. The 

kinds of questions which we will focus on in this work relate to the kinds of states that 

the folk refer to when they assert thinks like (1) to (5). 

Particularly important for our purposes is the fact that different levels of confidence 

are frequently represented numerically, as in example (3). In academic disciplines which 

deal with credences and utilities, mathematical models of total credence states—that is, a 

single agent’s full range of absolute and relative credences—usually take the form of 

numerically-valued functions defined on a set of propositions. More specifically, in most 

cases the models take the form of a credence function: 
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Definition 2.1: Credence function 

f  is a credence function iff f : 𝒫 ↦ [0, 1], where 𝒫 is a set of propositions 

 

This definition of a credence function does not require that propositions in 𝒫 are sets of 

worlds. For the purposes of Definition 2.1, we need only take propositions to be abstract 

entities with semantic values that make them fit to serve as the contents of our thoughts. 

Philosophers sometimes complain that such numerical models are unrealistic, as ordi-

nary agents “don’t have numbers in their heads”. This is a misconception: real-world ob-

jects don’t come with pre-attached numbers describing their weights, lengths, and vol-

umes, but this is no reason to think that ordinary objects lack such quantities. As is the 

case with physical quantities, all that matters is that our credences have a particular kind 

of structure such that they can be usefully represented with numbers—on this, see §2.3. 

That our credences do have such structure is, of course, a question open for debate—

though given the great successes achieved using numerical models of total credence 

states, it’s unlikely that they will go away any time soon.  

In what follows, I will use ‘ℬel’ to refer to any function designed to numerically model 

a total credence state, while ‘𝒟es’ will refer to a numerical model of a total utility state. 

ℬel will usually be a credence function; for exceptions, see §8.3.3 and Appendix B. If ℬel 

accurately models an agent’s total credence state then it will pair each proposition towards 

which the agent has some credence with a value that appropriately captures the degree of 

confidence attached to that state for the agent in question. I will leave open exactly what 

is required for a model to be accurate or for it to appropriately model agents’ credences: 

it seems unlikely that this notion can be usefully precisified prior to an already-established 

metaphysics of graded attitudes. 

Credence functions are lacking in internal structure. In general, representation theo-

rems will impose more structure upon their credence functions—that is, they will imply 

that ℬel satisfies certain properties. The vast majority of contemporary philosophical dis-

cussion has focused on a particular kind of credence function, namely, probability func-

tions:  

 

Definition 2.2: Probability function 

f : 𝒳 ↦ [0, 1] is a probability function iff 𝒳 is an algebra of sets on some set 𝒴, and: 

(i)  f (𝒴) = 1 

(ii)  For all x ∈ 𝒳, f (x) ≥ 0 

(iii)  For all x, y ∈ 𝒳, if (x ∩ y) = ∅, then f (x ∪ y) = f (x) + f (y) 

Furthermore, f  is a countably additive probability function iff f  is a probability function 

and: 

(iv)  If x1, x2, x3, … is in 𝒳 and x1, x2, x3 are pairwise jointly inconsistent, then f (x1 ∪ 

x2 ∪ x3 ∪ …) = f (x1) + f (x2) + f (x3) + … 
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Importantly, probability functions are defined on algebras: 

 

Definition 2.3: Algebra of sets 

𝒳 is an algebra of sets on 𝒴 iff, 𝒳 is a nonempty set of subsets of 𝒴, and for every x, y ∈ 

𝒳, 

(i)  𝒳∖x ∈ 𝒳 

(ii)  (x ∪ y) ∈ 𝒳 

Furthermore, 𝒳 is a σ-algebra iff it is an algebra of sets on 𝒴 and:  

(iii)  If x1, x2, x3, … is in 𝒳, then so is x′ = (x1 ∪ x2 ∪ x3 ∪ …) 

Finally, an algebra 𝒳 is bottomless just in case: 

(iv) For each x ∈ 𝒳, there are two non-empty y, y′ ∈ 𝒳 such that (y ∩ y′) = ∅, and (y 

∪ y′) = x 

 

It follows from conditions (i), (ii), and the fact that 𝒳 is non-empty that 𝒴 and the empty 

set ∅ are both in 𝒳. 

It is easy to see that every probability function on a set 𝒫 of propositions (usually 

understood as an algebra on a set of worlds 𝒲) is also a credence function, but not vice 

versa. A credence function need not satisfy any of (i) to (iii), and the domain of a credence 

function need not be an algebra. In all that follows, I will reserve the phrase ‘probability 

function’ for functions which satisfy Definition 2.2. Similarly, ‘probabilities’ will only be 

used to refer to the values of a probability function.8 If an agent’s total credence state is 

accurately modelled by a probability function—or, more specifically, a probability func-

tion defined on an algebra constructed from a set of possibilities—then we can say that 

the agent is probabilistically coherent. (As I will discuss further in Chapter 4, while every 

probabilistically coherent agent’s credences can be modelled by a probability function, 

not every probability function must model a probabilistically coherent agent’s credences.) 

There may, however, be probabilistically incoherent agents; or, in another turn of 

phrase, non-probabilistic credences. Many NCU representation theorems involve non-

probabilistic credence functions, such as Choquet capacities: 

 

Definition 2.4: Choquet capacity 

f : 𝒳 ↦ [0, 1] is a Choquet capacity iff 𝒳 is an algebra of sets on some set 𝒴, and: 

(i)  f (𝒴) = 1 

(ii)  f (∅) = 0 

(iii)  For all x, y ∈ 𝒳, if x ⊂ y then f (y) ≥ f (x) 

 
8 In some cases I will use the word ‘likelihood’. Such uses should be understood in its colloquial sense 

(akin to ‘subjective probability’), rather than its technical meaning in probability theory—i.e., where 𝒫r is 

a probability function, the likelihood of H with respect to E is 𝒫r(E|H). 
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Capacities are important for the theorems of Tversky and Kahneman (1992) and Schmeid-

ler (1989), amongst many others. 

Choquet capacities were introduced as a generalisation of probability functions—a 

probability function is simply a capacity satisfying a further condition (additivity). The 

notion of a credence function in a certain respect takes the generalisation several steps 

further. In the literature on the representation of credence systems, we also find the use 

of Dempster-Shafer belief functions and plausibility functions (Shafer 1976, Dempster 

1968), and possibility measures (Dubois and Prade 1988). Like capacities and probability 

functions, these can all be taken to be varieties of credence function, distinguished from 

one another by their structural characteristics. 

Importantly, however, characterisational representationism is not committed to repre-

senting credences by means of a credence function as defined above. Inasmuch as cre-

dence functions have been the focus of discussion, it is primarily due to the scarcity of 

decision-theoretic representation theorems which represent credence states by any other 

means. There are, however, strong reasons to look beyond credence functions for the rep-

resentation of our credences, which always assign a precise real value as a measure of 

credence (see Levi 1974, Kyburg 1992, Hájek and Smithson 2012). Some representation 

theorems exist which generalise the notion of a credence function still further. For in-

stance, in Alon and Schmeidler’s (2014) recent theorem, ℬel is an interval-valued func-

tion; i.e., a function from a set of propositions into a set of intervals constrained by [0, 1]. 

Real-valued credence functions can be taken as a special case of interval-valued func-

tions, in the obvious way. 

Total credence states have also been represented by so-called ranking functions (see 

Spohn 1988, 1990), plausibility measures (Halpern 2005), and several other kinds of 

functions which are not (or need not be) credence functions (for an overview of the 

alternatives, see Huber and Schmidt-Petri 2009, Halpern 2005). There are more possibil-

ities here than we can consider in the available space, so most of my attention will be 

directed towards credence functions. 

Finally, the function 𝒟es, designed to represent a total utility state, will always be a 

utility function, which can be more variable in character than credence functions. Usually, 

a utility function is any function from a non-empty set into the set of real numbers in-

tended to represent an agent’s total utility state. However, for different purposes it may 

be helpful to take the range of a utility function as including infinite cardinals along with 

the real numbers, or perhaps even intervals of numbers. 
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2.2 Two kinds of preference 

Our focus is on those representation theorems which have been developed for decision 

theory, which purport to show how a suitably rational system of preferences can be rep-

resented (in a sense to be precisified shortly). Exactly how the term ‘preference’ is to be 

understood varies from one context to another, and we will see various ways of under-

standing this notion and the objects of preference over the course of this work. Very 

roughly, though, we can distinguish two broad senses, which we ought to look at before 

moving on. 

The first sense might be called the mentalistic understanding of preference, where a 

mentalistic preference for P over Q is understood as the mental state of finding P more 

desirable than Q.9 The objects of mentalistic preference tend to be understood as propo-

sitions, though there may also be thought to exist primitive objectual preferences as well. 

It is this sense of ‘preference’ that appears to be what Richard Jeffrey had in mind when 

he wrote that: 

 

To say that [P] is ranked higher than [Q] [in the agent’s preference ranking] means that the 

agent would welcome the news that [P] is true more than he would the news that [Q] is 

true: [P] would be better news than [Q]. (1990, 82) 

 

In the second sense, an agent’s preferences are understood as behavioural-dispositional 

states; hence they might be called behavioural preferences. In particular, behavioural 

preferences are a kind of choice disposition—roughly, S behaviourally prefers x over y 

just in case, were x and y her only options, she would choose x. This is often described as 

the standard or orthodox conception of preference within economics and in many other 

fields (including philosophy) where decision theory is applied, and is most closely asso-

ciated with Savage’s and similar theorems (see Chapter 5). 

The variation in how ‘preference’ is understood is manifest in the great degree of var-

iation in how the objects of preference are formalised within different decision-theoretic 

representation theorems. Some theorems will treat preferences as being defined on a set 

of potential objects of choice (usually bets, gambles, or acts), while others will define 

them on a set of propositions (which are not in all cases the kinds of things an agent can 

choose between). 

 
9 The terminology being used here is borrowed, with slight modifications, from (Dietrich and List 

forthcoming). Sobel (1997) refers to the mentalistic sense as preferences tout court, and argues that it is the 

more common, folk understanding of the term. However, in many circles—particularly economics—there 

is a strong tendency to take ‘preference’ and ‘choice’ as more or less synonymous. This is largely due to 

the influence of revealed preference theory. Some authors are careful to distinguish what I have called 

mentalistic preferences from choice dispositions, but think that the former are directly manifest in the latter. 
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On all ways of cashing out the notion, though, preferences are ternary relations be-

tween an agent at time and two objects of preference (whatever those objects may be). 

As we only ever consider a single agent’s preferences at a time, each agent’s preferences 

(in whatever sense) are, in the majority of cases, formally modelled using a single binary 

relation, the weak preference relation ≽: 

 

Definition 2.5: Weak preference 

For any two objects of preference x and y, x ≽ y (relative to an agent S) iff S either prefers 

x to y, or is indifferent between x and y 

 

We can define ≻ (strict preference) and ∼ (indifference) in terms of ≽.10 In particular, we 

can say that x ∼ y iff x ≽ y and y ≽ x, and x ≻ y iff x ≽ y and ¬(y ≽ x). For the rest of this 

work, all ≽, ≻, and ∼ (i.e., without superscripts) I will refer to as preference relations. 

Preference relations are always defined on a non-empty set ℬ𝒪𝒫 of basic objects of 

preference. 

It is worth saying a few more words about the behavioural conception of preference. 

The historical basis for the behavioural construal of ≽ traces back at least to revealed 

preference theory, as founded by Paul Samuelson, who wrote that “the individual guinea-

pig, by his market behaviour, reveals his preference pattern—if there is such a consistent 

pattern” (1948, 243). Samuelson’s project was thoroughly behaviouristic, aimed at “free-

ing” economics from “any vestigial traces of the utility concept” (Samuelson 1938, 71); 

i.e., by showing that statements about (mentalistic) preferences and utilities can be recast 

in terms of choice behaviour.  

Even amongst those who might otherwise reject behaviourism, there is still the strong 

tendency to interpret preference relations as they are found within a standard decision-

theoretic representation theorem in behavioural terms. It is routine for descriptive deci-

sion theorists to describe their theorems’ preference conditions as behavioural conditions. 

Examples here are legion, though a particularly telling recent example is a paper entitled 

‘A Simple Behavioral Characterisation of Subjective Expected Utility’ (Blavatskyy 

2013), which claims to present “a new behavioral characterization (preference axiomati-

zation) of subjective expected utility” within a Savage-style framework.11 Likewise, in 

their recent paper against characterisational representationism, Christopher Meacham and 

Jonathan Weisberg assume that the typical representation theorem’s preference condi-

tions can be taken to “encode [an agent’s] behavioural dispositions” (2011, 643). 

 
10 Sometimes—particularly when ≽ is allowed to be incomplete—theorists will take ≻ and ∼ as primi-

tives, with ≽ being defined in terms of them rather than vice versa. 

11 Incidentally, as the title makes clear, this paper is also putting forward an instance of characterisational 

representationism. 
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There are, however, well-known problems with the choice-based interpretation of pref-

erence relations. I will only briefly discuss two of these; my intention in this work is to 

cast doubt upon the theorems which best fit with a behavioural conception of preference 

by highlighting issues which are independent of whether that conception is viable (or can 

be made viable).12  

The first problem is that the foregoing (and admittedly rough) characterisation of be-

havioural preferences is incapable of distinguishing “genuine” (i.e., mentalistic) prefer-

ences from indifference.13 Suppose first of all that S is rational, and always chooses the 

alternative which she prefers. However, even given S’s rationality, her choice of x instead 

of y (when only x and y are available) may be the result of a preference for x—but it may 

also be that S is indifferent between the two options, and (in the nearest possible world 

where x and y are her only options) chose x at random because she had to choose one.  

This well-known problem has leads naturally to the following refined definition: 

 

S behaviourally prefers x over y iff, in situations where there no other options available, S 

is disposed to choose x; S is indifferent between x and y iff S has no dispositions either way 

 

The refinement helps (randomly choosing x is not the same thing as being disposed to 

choose x), but perhaps it does not go far enough. Consider the following case, which 

originates with (Maher 1993, 12-15). Sally is presented with three essentially identical 

opaque boxes, labelled x, y, and z, and allowed to take one. Suppose that Sally feels no 

particular desire for x, y, or z over any of the others. However, due to a general sense of 

angst towards indecision—as a child, she was told horror stories about Buridan’s ass—

Sally has cultivated a disposition to choose any box labelled x in this kind of situation. In 

this kind of case, Maher argues, Sally’s disposition to choose x over y does not reflect any 

genuine feeling of preference—she is indifferent between all the options—but according 

to the revised definition, x ≻ y. 

Now, to be sure, a proponent of the behavioural interpretation of ≽ need not be inter-

ested in whether S feels a stronger desire for x over y. Perhaps the intended interpretation 

of ≽ is not supposed to capture perfectly what the folk mean by ‘preference’, but instead 

a technical notion which should be divorced from the introspectively accessible intensi-

ties of desire that we feel towards objects of choice (cf. Ramsey 1931, 171-2). We cannot 

reject the behavioural conception of preference just because it’s not coextensive with the 

mentalistic conception. 

The second issue with the behavioural conception of preference seems to me the more 

serious, however, and concerns the counterfactuals involved. In particular, the problem is 

that the nearest possible worlds in which the antecedents of the counterfactuals in the 

 
12 See especially §5.2–4, and §6.1. 

13 See also Joyce (1999, 19-22, 99-102). 
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definition are true might be very far off indeed. We need to consider a scenario, for each 

pair of possible objects of choice that are presently available to the agent, in which just 

those two options are on the table, so to speak. For almost all decision situations, there 

are a vast number of different possible options to choose from. For instance, where x and 

y are two arbitrary acts, it’s hard to even imagine what a world must be like for only x 

and y to be available, if indeed there are any such worlds at all. Certainly, if they even 

exist, these are worlds far different than the one in which the decision-maker is actually 

making any decisions—and they are likely to be worlds where her credences and utilities 

are quite different than they are in the actual world. It is hard to imagine why an agent’s 

dispositions in such circumstances should be very closely related to what might be going 

on inside her head here in the actual world. 

In what follows, I will assume that—despite these issues—a behavioural definition of 

≽ can be made viable, and has roughly the form that it was presented with above. As I 

will argue below, there are more troubling concerns for characterisational representation-

ism, if it appeals to a representation theorem designed around the behaviouristic notion 

of preference. 

2.3 The representational theory of measurement 

In order to understand the thesis of characterisational representationism, it will be helpful 

to have a clear idea of what representation theorems consist in. I will begin with a very 

simple example of a representation theorem which does not originate from decision the-

ory. Suppose we have a set of 1000 concrete objects, 𝒪ℬ = {ob1, ob2, …, ob1000}, where 

some of these objects may be just as hard as others, while some may be harder than 

others. (Assume for simplicity that each object has a uniform hardness.) Our goal is to 

find a way to formally represent this quantity of hardness, in a sense to be made precise 

shortly. 

Let ≻h stand for the harder than relation, and ∼h the just as hard as relation. These 

two relations form two non-overlapping parts of the at least as hard as relation ≽h; so, 

for all obi and obj, 

 

obi ≽h obj iff either obi ∼h obj or obi ≻h obj 

 

We suppose that in at least one direction, ≽h holds between every pair of objects—that 

is, for all obi and obj, 

 

obi ≽h obj or obj ≽h obi 
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In this case we say that ≽h is complete (on 𝒪ℬ). Furthermore, it is very plausible that ≽h 

is transitive; that is, for all obi and obj, 

 

If obi ≽h obj and obj ≽h obk, then obi ≽h obk 

 

The satisfaction of these two conditions, transitivity and completeness, means that ≽h on 

𝒪ℬ is a weak ordering. 

 

Definition 2.6: Weak ordering 

A binary relation ≽x is a weak ordering iff ≽x is transitive and complete 

 

In an intuitive sense, ≽h orders 𝒪ℬ into a sequence of groups according to their hardness. 

The first part of ≽h, the indifference relation ∼h, is symmetric (i.e., obi ∼h obj implies obj 

∼h obi) and transitive. Because of this, ∼h can be understood as sorting the objects into 

groups with exactly the same degree of hardness. The second part of ≽h, ≻h, which is 

antisymmetric (i.e., obi ≻h obj implies ¬(obj ≻h obi)) and transitive, can then be understood 

as ordering those groups into a sequence from the most to the least hard. 

We wish to represent this weak ordering numerically, in the sense of assigning num-

bers to the objects to represent their place in the order, with larger numbers being used to 

represent greater degrees of hardness. For this we appeal to a representation theorem. It 

turns out that, given our suppositions about ≽h, we can prove the existence of a function 

f  which assigns a natural number to each object in 𝒪ℬ such that for all such objects obi 

and obj, 

 

obi ≽h obj iff f (obi) ≥ f (obj) 

 

In the jargon, f  represents ≽h on 𝒪ℬ. Note, though, that this is a highly technical usage 

of the term ‘represents’, and it will be helpful for what follows to distinguish this technical 

usage of ‘represents’ from the everyday, folk conception of representation. Let us use ‘T-

represents’ for the technical notion: 

 

Definition 2.7: T-representation of a binary relation 

A function f : 𝒳 ↦ ℝ T-represents a binary relation ≽x on 𝒳 iff, for all x, y ∈ 𝒳, x ≽x y iff 

f (x) ≥ f (y) 
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So defined, T-representation is relation which holds between a function f  and a relation 

≽x on a set 𝒳 iff f  is a mapping from 𝒳 into ℝ that preserves the structure of ≽x on 𝒳.14 

With only a slight abuse of this technical usage, we might also say that for all x ∈ 𝒳, f (x) 

T-represents x whenever f  T-represents ≽x on 𝒳. 

In an important sense, what is required for one thing to T-represent another is far more 

demanding than we would expect given the ordinary notion of representation, which does 

not require such strict correspondence of structure. In the ordinary sense, a portrait might 

represent a famous figure, and indeed it might do so quite well (or quite poorly), without 

resembling the figure perfectly. The T-representation relation shown to exist by a repre-

sentation theorem more closely resembles an infinitely high-definition photograph than it 

does a portrait. The required precision also means that necessary and sufficient conditions 

for T-representation are demanding. That one system cannot be T-represented by another 

system should not be taken to imply that the latter cannot adequately represent the former 

according to the ordinary notion of representation. 

In the most general sense, a representation theorem is a (mathematically provable) 

statement to the effect that if certain conditions are satisfied, then there exists a structure-

preserving mapping between two previously defined kinds of sets—typically, a set of 

concrete objects all sharing a quantitative property to differing degrees, and a set of num-

bers. The relevant structure to be preserved can be specified by means of a relational 

system; that is, a sequence of the form <𝒳, R1, …, Rn>, where 𝒳 is a non-empty set and 

R1, …, Rn are relations defined on 𝒳.15 The intuitive idea is that the relations R1, …, Rn 

characterise the relational structure of the empirical domain 𝒳—or at least the relational 

structure that we are interested in capturing numerically.  

Say that <𝒳, ≽x> is a finite weak order iff 𝒳 is non-empty but finite and ≽x on 𝒳 is 

an arbitrary weak ordering. The theorem adverted to just above would then be: 

 

Theorem 2.1: Simple finite ordinal scale 

If <𝒳, ≽x> is a finite weak order, then there exists a function f : 𝒳 ↦ ℝ that T-represents 

≽x on 𝒳 

 

In effect, Theorem 2.1 asserts that any finite weak order <𝒳, ≽x> is isomorphic to some 

numerical relational system <ℝ*, ≥>, where ℝ* ⊆ ℝ. Given our assumptions, the hardness 

relational system <𝒪ℬ, ≽h> is a finite weak order, and so can be given a simple ordinal 

T-representation: one can precisely replicate the structure of ≽h on 𝒪ℬ using ≥ on some 

set of numbers ℝ*. 

 
14 Usually isomorphic mappings are desired, but other kinds of structure-preserving mappings are coun-

tenanced in the representational theory of measurement. See (Swoyer 1991) for the minimal sense in which 

ℱ must be structure-preserving. 

15 Formally, n-ary relations are modelled set-theoretically as ordered n-tuples. 
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Note, however, that Theorem 2.1 says nothing about hardness directly. To see this, 

note that while ≽x could symbolise the at least as hard as relation, it could also symbolise 

to the left of, or at most as funny as, or any other binary relation whatsoever. The appli-

cation of the theorem to the measurement of hardness depends on an interpretation—the 

substitution of a purely formal system <𝒳, ≽x> for a particular system <𝒪ℬ, ≽h> with the 

adequate structure. 

There is clear value in constructing a numerical T-representation. Theorem 2.1 shows 

that the hardness relational system has the same structure as a set of numbers weakly 

ordered by the greater than relation. By virtue of this similar structure, we can engage in 

what Swoyer (1991) helpfully refers to as surrogative reasoning, or reasoning using the 

numerical system so as to draw conclusions about the empirical (and non-numerical) sys-

tem that it T-represents. We are very adept at recognising quickly when one number is 

greater than, less than, or equal to another number, so to label one object ob1 with a num-

ber n and another object ob2 with m supplies us with an immediately accessible and easily 

manipulable system with which to reason about the relative hardnesses of ob1 and ob2. 

The theorem also serves to highlight exactly which relations between the natural num-

bers can be used to (validly) reason surrogatively about empirically interesting relations 

between the objects. In our example, ≽h is T-represented by f  in the form of ≥, and given 

our assumptions, this implies that:  

 

obi ∼h obj iff f (obi) = f (obj) 

 

And:  

 

obi ≻h obj iff f (obi) > f (obj) 

 

However, other possible mathematical relationships between the numbers f (obi) and 

f (obj) need not correspond to any interesting relationship that holds between the objects 

in 𝒪ℬ. For instance, suppose that f (obi) = 2.f (obj). It would be mistake to infer that obi 

will be twice as hard as obj, because the twice as hard as relation is nowhere specified in 

the relational system <𝒪ℬ, ≽h>. An equivalent way to make this point is to note that there 

are infinitely many ways to assign natural numbers to the objects in 𝒪ℬ so as to accurately 

preserve their places within the ≽h order, and the fact that f (obi) = 2.f (obj) on one assign-

ment of values f  does not imply that f *(obi) = 2.f *(obj) on any other assignment f *. In the 

jargon, we would say in this circumstance that f  is unique up to monotone transformation, 

where a monotone transformation 𝒯 is a function that assigns new values such that: 

 

f (obi) ≥ f (obj) iff 𝒯(f (obi)) ≥ 𝒯(f (obj))  

 



 

22 

 

It is only the mathematical information which is common to all of these assignments (i.e., 

their ≥-order) that is empirically meaningful and available for surrogative reasoning; an-

ything else is an artefact of the particular numerical assignment arbitrarily chosen from 

an infinite set of equally valid measures. To T-represent any further information, such as 

ratios of hardness, we would need to use a more structured relational system than <𝒪ℬ, 

≽h>—and we would also need much more demanding conditions to establish the exist-

ence of an appropriate T-representation. 

2.4 Decision-theoretic representation theorems 

The simple relational system <ℬ𝒪𝒫, ≽> captures the structure of an agent’s basic system 

of preferences at a particular time. The aim of a decision-theoretic representation theorem 

is then to develop a suitable, and reasonably unique, numerical T-representation of ≽ on 

ℬ𝒪𝒫. Unless otherwise specified, all uses of ‘representation theorem’ will henceforth 

refer only to decision-theoretic representation theorems. 

The vast majority of contemporary theories of decision-making treat an agent’s basic 

system of preferences as being determined by the interaction of (at least) two distinct 

measurable factors—her credences and her utilities. Correspondingly, the aim of these 

theorems is to show that an agent’s basic system of preferences can be T-represented by 

a single numerical ordering determined in turn by the combination of (at least) two func-

tions corresponding to the agent’s credences and utilities: ℬel and 𝒟es.  

There are two basic kinds of theorem we will look at: classical expected utility (CEU) 

theorems and non-classical utility (NCU) theorems. CEU theorems are more widely 

known and discussed by philosophers; they are often taken to form the foundations for 

orthodox Bayesian approaches to rational decision-making. NCU theorems are more gen-

erally favoured within psychology as a descriptive enterprise aimed at characterising the 

actual decision-making behaviour of ordinary agents. In what follows, I will first give an 

outline of the main features of a typical CEU theorem, before distinguishing CEU from 

NCU theorems. 

The standard model of a decision situation takes the form of a matrix: 

 

States 

Options 

s1 s2 s3 … 

x  o2 o1 o2 … 

y o1 o2 o2 … 

… … … … … 

 

We find in this model several key elements: 
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* A number of possible states (or possibilities, ways the world might be, events, etc.). These 

should be pairwise inconsistent and jointly exhaustive of the possibilities (or at least the 

possibilities the decision-maker has some credence in). 

* A number of options (e.g., acts, decisions, gambles, etc.). These are the items we aim to 

decide between, the basic objects of preference. They will typically have different out-

comes under different possibilities. These should constructed such that choice of one option 

precludes the choice of any other. 

* A number of possible outcomes, or the consequences of choosing a particular option given 

a particular state. These need not partition the space of possibilities, but they should be 

mutually exclusive. 

 

The purpose of the decision matrix is to determine a preference ranking on the options 

according to some decision-making principle. According to CEU, that principle is ex-

pected utility maximisation: states are assigned credences, outcomes are assigned utilities, 

and the preferred act should have the highest credence-weighted average for its associated 

outcomes. CEU also imposes the requirement that credences ought to be probabilities—

or, in another manner of speaking, the theory is only applicable to probabilistically co-

herent agents.  

It is worth noting that here and below I will use ‘expected utility maximisation’ in a 

relatively loose way: an agent maximises expected utility just in case she chooses the 

option with the highest credence-weighted average utility, regardless of whether those 

credences are probabilities. In the mathematical jargon, ‘expectation’ is defined in terms 

of probability functions: the expected value (EV) of a numerically-valued function f  in a 

single discrete variable x is: 

 

∑   
𝑥 f (x).𝒫r(x) 

 

where 𝒫r is a pre-specified probability function. However, contemporary theorists usu-

ally have a more general notion of ‘expectation’ in mind when they speak of, for example, 

Choquet expected utility theory—according to which preferences can be represented us-

ing the basic form: 

 

∑   
𝑥 𝒟es(f (x)).ℬel(x) 

 

where ℬel need only be a capacity. In what follows, then, my use of ‘ℰ𝒰’ will designate 

expected utility functions, in the looser sense of ‘expected utility’. The defining charac-

teristic of any ℰ𝒰 function is that assigns a numerical value n to a basic object of prefer-

ence, where n is equal to the credence-weighted average utility of the possible outcomes 

associated with that object (where the credences in question need not be probabilities). 
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As an example of how CEU works, suppose that we fill in the values of a decision 

matrix like so: 

 

States 

Options s1 = 0.25 s2 = 0.25 s3 = 0.5 

x o2 = 2 o1 = 1 o2 = 2 

y o1 = 1 o2 = 2 o2 = 2 

z o3 = 3 o3 = 3 o2 = 2 

 

The states, s1 – s3, we assume are mutually exclusive and jointly exhaustive, and so their 

probabilities sum to 1. The expected utility of x is: 

 

ℰ𝒰(x) = 0.25(2) + 0.25(1) + 0.5(2) = 1.75 

 

This is equal to the expected utility of y: 

 

ℰ𝒰(y) = 0.25(1) + 0.25(2) + 0.5(2) = 1.75 

 

According to CEU, then, x ∼ y. However, the expected utility of z is 2.5: 

 

ℰ(z) = 0.25(3) + 0.25(3) + 0.5(2) = 2.5 

 

The final ranking we arrive at is thus z ≻ x ∼ y. In this way, each option in a decision 

situation can be assigned a numerical value according to its position in the preference 

order, with higher expected utility values sitting higher in the order. 

Representation theorems for decision theory come in all shapes and sizes; however, 

every such theorem (for either CEU or NCU) will formalise the basic elements of the 

standard decision matrix in one way or another. It is impossible to state in a general fash-

ion how this is done: different theorems may employ different primitives, different con-

structions out of those primitives, or require different conditions on preferences, and they 

may lead to very different T-representations with varying degrees of uniqueness. Follow-

ing Savage’s (1954) seminal contribution, however, most representation theorems are 

based around three sets of entities—a set of outcomes, a set of possibilities (or states), 

and a set of acts (formally modelled as functions from states to outcomes)—with ≽ being 

defined in the first instance on the set of acts. We will look Savage’s formal system in 

much greater detail in Chapter 5; for now, the specifics can be set aside. 
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With the basic formal elements specified, we find a statement of a number of prefer-

ence conditions, which we will label C, such as the requirement that ≽ on ℬ𝒪𝒫 is a weak 

ordering.16 The typical CEU theorem then has the following general form: 

 

Typical CEU Theorem 

If ≽ on ℬ𝒪𝒫 satisfies the stated conditions C, then there exists a function ℰ𝒰: ℬ𝒪𝒫 ↦ ℝ 

that T-represents ≽ on ℬ𝒪𝒫; i.e., for all x, y ∈ ℬ𝒪𝒫,  

(i) x ≽ y iff ℰ𝒰(x) ≥ ℰ𝒰(y), 

where ℰ𝒰 is an expected utility function determined by functions ℬel and 𝒟es which satisfy 

properties R (esp., ℬel must be a probability function) 

 

Some of the conditions specified in C may be necessary for the existence of the T-repre-

sentation, where this means that their satisfaction is implied by the assumption that the 

relevant T-representation exists. In the event that the all of the conditions C are necessary, 

the theorem can be stated as a biconditional instead of taking the conditional form given 

here. However, in almost all cases there will also be a number of non-necessary conditions 

included in C as well; these typically take the form of an existential condition. It is ex-

tremely difficult to discover conditions that are both jointly sufficient and individually 

necessary for the existence of an ℰ𝒰 T-representation. 

Uniqueness conditions are usually also given alongside the statement of a representa-

tion theorem. What I will call the Standard Uniqueness Condition is quite strong: 

 

Standard Uniqueness Condition 

ℬel is unique and 𝒟es is unique up to positive linear transformation (i.e., unique up to 

multiplication by a positive real number and the addition of a constant)17 

 

It is important to be clear on the sense in which ℬel and 𝒟es are unique. The Typical CEU 

Theorem requires that ℰ𝒰 is an expected utility function determined by some ℬel and 

 
16 A theorem may also require a number of purely structural conditions (i.e., conditions that do not refer 

to the preference relation), which lay down any restrictions or assumptions that are supposed to hold for 

the sets involved in the statement of the theorem. For instance, a purely structural axiom might specify that 

the set of states is finite or uncountably infinite, or that the set of outcomes is finite. Sometimes, purely 

structural axioms are left implicit, or built into one of the definitions that the theorem employs. 

17 Most decision theorists assume that utilities are only measurable on an interval scale, with no sense 

to be made of an absolute zero utility state: utilities can have different strengths, and one outcome may be 

much more or much less desirable than another, but we cannot say (for example) that a given outcome is 

twice as desirable as another. (Compare the measurement of temperature: 40° C is much warmer than 20° 

C, but it is not twice as warm as the scale depends on an arbitrary choice of unit and zero point.) If this is 

correct, then we might say that 𝒟es is effectively unique under the Standard Uniqueness Condition; that is, 

differences between positive linear transformations of a 𝒟es function are merely notational. 
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𝒟es pair, with specific properties R, combined in a particular way. Regarding ℬel, then, 

the Standard Uniqueness Condition only says that there is exactly one function with the 

relevant properties, which, when combined in a particular way with some appropriate 

𝒟es, will allow us to T-represent ≽ on ℬ𝒪𝒫. The relevant properties for ℬel will usually 

include such things as being defined on a particular set and being a probability function.  

The uniqueness condition does not imply that the only way to T-represent ≽ on ℬ𝒪𝒫 

is via ℰ𝒰-maximisation using some ℬel and 𝒟es with properties R. For example, other T-

representations might involve either a ℬel function without the specified properties (e.g., 

a non-probabilistic function), or they might involve a wholly different combination rule. 

An analogous point holds for 𝒟es: the uniqueness condition only asserts that it’s unique 

up to positive linear transformation under the condition that the final form of the T-rep-

resentation of ≽ is held fixed. As we will see in §2.5 and §3.2, accounting for a proper 

interpretation of the uniqueness condition is extremely important for fleshing out the de-

tails of characterisational representationism. 

The ℰ𝒰 function we arrive at might take a wide variety of forms, dependent on the 

characteristics of the formal system employed. A simple example of an ℰ𝒰 function 

would be as follows. Suppose that our basic options are understood to be potential acts 

the agent might take in the given situation, and a given act is formalised as a function ℱ 

from a number n of states to particular outcomes. Suppose also that the final T-represen-

tation is such that every state gets a particular probability (assigned by ℬel) and every 

outcome gets a particular utility value (assigned by 𝒟es). Then we might have ℰ𝒰 deter-

mined as: 

 

ℰ(ℱ) = ∑  𝑛
𝑖 ℬel(si).𝒟es(ℱ(si)) 

 

This is, roughly, the T-representation of ≽ arrived at by Savage (see §5.1.2). However, 

there are many other theorems which involve expected utility maximisation—compare, 

for instance, Theorem 6.2, Theorem 6.3, and Theorem 8.3. 

So much for the typical CEU theorem; we now move on to NCU theorems. These 

theorems tend to be very similar to CEU theorems in their formal underpinnings. Often, 

NCU theorems involve exactly the same formal structures as Savage’s paradigmatic mul-

tiset theorem—albeit with weaker preference conditions, such that a distinct and usually 

more general style of T-representation is arrived at. Specifically, NCU theorems satisfy 

at least one of the following: 
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(a) ℬel need not be a probability function 

(b) Other functions besides ℬel and 𝒟es are employed in the T-representation of ≽ 

(c) ℬel and 𝒟es jointly T-represent ≽ according to some combination rule other than ex-

pected utility maximisation 

 

Essentially, any representation theorem which does not leave us with a T-representation 

of agents’ preferences as being determined by probabilistic expected utility maximisation 

is an NCU theorem. The following three examples should be helpful: 

 

* As above, Choquet expected utility models T-represent ≽ in a manner extremely similar to 

Savage’s CEU theorem, however ℬel need only be a capacity. 

* Buchak’s (2013) T-representation of ≽ involves a probability function ℬel, a utility func-

tion 𝒟es, and a third real-valued function ℛ that is intended to reflect the degree to which 

an agent is risk averse. 

* Alon and Schmeidler’s (2014) T-representation involves a ℬel which is not a credence 

function, and combines ℬel and 𝒟es according to the so-called maxmin rule. 

 

Several important examples of NCU theorems, including Buchak’s and Alon and 

Schmeidler’s, are discussed in more detail in Appendix B. Theorem 8.3, developed in 

Chapter 8, also counts as NCU by virtue of its non-probabilistic ℬel. 

Before we move on to the interpretation of these theorems, it is important to note the 

specific kind of theorem that I will be focusing on in this work. In particular, I have lim-

ited my attention to those theorems which take preference relations, and only preference 

relations, as primitive; these we might call single-primitive representation theorems. 

There also exist dual-primitive representation theorems. For example, Joyce’s (1999) the-

orem makes use of ≽ as well as a second primitive binary relation defined on a set of 

propositions, ≽b, which is supposed to represent the agent’s relative credences. (≽b is 

often referred to in the literature as a qualitative probability relation.) That is,  

 

Definition 2.8: ≽b 

P ≽b Q (relative to an agent S) iff S judges P to be at least as likely as Q 

 

Dual-primitive theorems will typically build ℬel primarily out of ≽b, and are for that rea-

son far less useful to preference functionalists hoping to characterise credences in terms 

of preferences. In what follows, I will not specify that the theorems under discussion are 

single-primitive. 

I have also chosen not to consider in any depth those theorems which take us from a 

so-called system of qualitative probability, <𝒫, ≽b> where 𝒫 is an algebra of propositions, 

to a probability function 𝒫r which T-represents ≽b on 𝒫. The role of such theorems in the 
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measurement and characterisation of credences is discussed by Koopman (1940), Suppes 

(1994), Zynda (2000), and Meacham and Weisberg (2011), amongst others. These theo-

rems might be useful for an attempted reduction of absolute credences to relative cre-

dences, but the viability of that project is beyond the scope of the present work. 

2.5 Interpretations 

We must be very careful to distinguish between a representation theorem and its interpre-

tation (cf. Hampton 1994, Hausman 2000, 100-1). Fundamentally, what each representa-

tion theorem tells us is that if some relation ≽x defined on an appropriately structured set 

𝒳 satisfies some set of conditions C, then there are some functions ℬel and 𝒟es (plus 

perhaps others) with such-and-such properties that when combined in the right way 

jointly T-represent ≽x on 𝒳. What lessons we draw from such results depends on how we 

interpret ≽x, 𝒳, ℬel, 𝒟es, and the combination rule—and there are countlessly many pos-

sibilities here. 

For example, in just the same way that the ≽x mentioned in Theorem 2.1 need not be 

interpreted (or interpretable) as the at least as hard as relation, the relation ≽ mentioned 

in the statement of a representation theorem need not be a preference relation. For in-

stance, suppose that ≽ is defined on a set of actions and stands for the involves at least as 

many poodle interactions relation. In this case, the theorem may imply that if an agent’s 

available actions are ranked by the number of poodle interactions they involve and that 

ranking satisfies C, then ≽ can be T-represented via a probability function ℬel and a real-

valued function 𝒟es. Obviously, in this case, there is no reason to think that ℬel and 𝒟es 

correspond to anything psychologically real or interesting: the fact that the poodle ranking 

might be T-represented in a certain way is hardly more than a mathematical curiosity. 

Importantly, a representation theorem may not have any interesting implications for 

preferences at all. The fact that ‘≽’ is called a preference relation is not enough to ensure 

that it can reasonably be so interpreted; it is given that name only because that is the 

interpretation that theorists desire for it to have. However, it may be the case that the 

formal relata of ≽ bear no resemblance whatsoever to the kinds of things that we would 

ordinarily call objects of preference—in that case, there would be little sense of interpret-

ing ≽, ≻, and ∼ as genuine preference relations. As we will see in §5.2 and §6.1, the 

interpretation of ≽ as encoding a subject’s preferences (in any sense) can sometimes be 

very strained, given the formal restrictions imposed by the theorem’s conditions on ≽’s 

basic relata.  

Nevertheless, as noted in Chapter 1, representation theorems are usually understood as 

telling us something about how certain agents can be represented qua decision-makers. 

Here, for instance, is a recent (and intentionally informal) gloss of a CEU theorem and its 

uniqueness condition given by Christensen (2004, 125): 
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If an agent’s preferences obey constraints C, then they can be represented as resulting from 

some [effectively] unique set of utilities [𝒟es] and probabilistically coherent degrees of 

belief [ℬel] relative to which they maximise expected utility. 

 

We will need to be more precise than this, however. In particular, we will need to gener-

alise the interpretation to accommodate NCU theorems, clarify the relevant sense of ‘rep-

resentation’, and (most importantly) clarify exactly what ℬel and 𝒟es can be taken to be 

representations of. 

In the ordinary sense of the term, representation is, or at least can be, very cheap. In 

particular, representations need not be accurate; indeed in some cases a representation 

can be considered better because of its inaccuracies. A caricature, for example, is a kind 

of representation where exaggeration is a desirable feature. Because a representation in 

the ordinary sense need not be accurate, there is a trivial sense in which anyone can be 

represented as an expected utility maximiser; likewise, anyone can be represented as an 

expected utility minimiser, and as having any set of credences and utilities that we like. 

We did not need a representation theorem to tell us that agents can be represented as 

following particular decision rules, this much we can know already. If a representation 

theorem is to be philosophically useful, there must be a tighter sense of ‘representation’ 

involved. 

What we want is a sense of ‘representation’ which is weaker than T-representation, 

where a high degree of accuracy is assumed but absolute precision is not a success con-

dition. Talk of models in the sciences appears to be like this. The billiard ball model of 

gasses, for example, or the Bohr model of the atom, are simple representations of empir-

ical phenomena, the components of which are supposed to closely (though usually not 

precisely) correspond to key features of interest in the phenomena being modelled. Im-

portantly, scientists often make use of mathematical models—for example, equations de-

signed to represent population growth and predator-prey interactions—which again are 

deemed useful insofar as they are accurate, despite diverging from the phenomena that 

they represent in the finer details. Most descriptive decision theorists would count their 

work as aiming at the development of broadly accurate mathematical models of the ordi-

nary agents’ decision-making process. Such models admittedly contain some idealisa-

tions and abstractions, but on the whole they are supposed to capture the basic psycho-

logical phenomena associated with decision-making. 

Not every aspect of a model is designed to have a representational function. A billiard 

ball is usually made of resin, but the billiard ball model of gases is not meant to imply 

that gases are usually made of resin. We can thus distinguish between those aspects of a 

model that are explicitly supposed to play a representational function, and those which 

don’t. This distinction will prove helpful in spelling out the Decision-theoretic Interpre-
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tation of a representation theorem. Firstly, call a mathematical model of an agent’s deci-

sion-making process paramorphic iff the model accurately captures the facts about the 

agent’s preferences.18 A paramorphic model of a decision-maker may or may not ade-

quately model the psychological mechanics which give rise to the agent’s preferences (it 

may, for instance, wholly misrepresent the agent’s credences and utilities); all that matters 

is that it produces the right pattern of preferences. On the other hand, call a model homo-

morphic iff it not only accurately captures the preference facts, but also captures the 

agent’s actual credences, utilities, and whatever high-level psychological processes are 

involved in the agent’s decision-making procedure. That is, a homomorphic model pro-

vides an accurate depiction of the agent’s decision-making which gets both the preference 

patterns and the underlying psychological mechanics right, while a paramorphic model is 

any model which produces the right preference patterns. Every homomorphic model will, 

therefore, be a paramorphic model, but only some paramorphic models will be homomor-

phic. 

We now have the resources to precisify the earlier interpretation. I will begin with a 

specific example—Savage’s theorem—before generalising: 

 

If ≽ on 𝒜 satisfies the stated conditions C, then there exists a function ℰ𝒰 defined on 𝒜 

that T-represents ≽ on 𝒜, in the sense that for all ℱ, 𝒢 ∈ 𝒜,  

(i) ℱ ≽ 𝒢 iff ℰ(ℱ) ≥ ℰ𝒰(𝒢), 

where ℰ𝒰 is an expected utility function determined by a probability function ℬel (defined 

on a set of events ℰ) and a utility function 𝒟es (defined on a set of outcomes, 𝒪); further-

more, there is only one such probability function ℬel, and 𝒟es is unique up to positive 

linear transformation 

 

Let us say that an agent is preference-rational with respect to a theorem’s preference 

conditions C just in case her preferences satisfy C. (In the sequel, I will not specify the C 

with respect to which an agent counts as preference-rational unless it’s unclear from the 

context of the discussion.) A precise Decision-theoretic Interpretation of Savage’s repre-

sentation result is then as follows: 

 

There is a mapping Ψ that pairs each preference-rational agent S with a paramorphic model 

of S as an expected utility maximiser (with respect to ≽ on 𝒜) with credences at least 

partially modelled by a probability function ℬel on ℰ and utilities at least partially mod-

elled by 𝒟es on 𝒪 

 

 
18 The ‘paramorphic’/‘homomorphic’ terminology is borrowed, with slight modifications, from Wakker 

(2010, 9). 
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It will be helpful to have a name for the mapping ψ, so we will call it a modelling scheme. 

The uniqueness condition can also be stated: 

 

Any model of S as an expected utility maximiser (with respect to ≽ on 𝒜) involving a 

probability function ℬel′ on ℰ  and a utility function 𝒟es′ on 𝒪 will be such that ℬel′ = ℬel 

and 𝒟es′ is some positive linear transformation of 𝒟es 

 

Because 𝒟es is not wholly unique, Savage’s theorem actually establishes the existence of 

a class of modelling schemes. Every Ψ in this class will assign ℬel as a model of the 

agent’s credences (or at least a partial model), but will assign different 𝒟es functions for 

the agent’s utilities (each a positive linear transformation of the others). 

There are some important things to note about this interpretation. First of all, inasmuch 

as the representation theorem in question contains non-necessary preference conditions—

as do the vast majority—it would be a mistake to suppose that only preference-rational 

agents can be paramorphically modelled in the relevant manner. The theorem tells us that 

preference-rational agents can be modelled in a certain way; it doesn’t tell us that prefer-

ence-irrational subjects cannot also be modelled in that way. 

The key point to note about the given interpretation, however, is that ℬel and 𝒟es are 

not assumed to be complete models of S’s total credence and utility states. Under this 

interpretation, if ℬel is not defined for some proposition P—i.e., if P ∉ ℰ—then the agent 

is neither represented as having nor lacking any credence in P—the modelling scheme is 

silent on this matter (and likewise for 𝒟es). Since credences towards the propositions 

outside of ℰ are not taken to be involved in determining ≽, they are unconstrained by the 

representation theorem: any value (or lack of value) may be assigned to them consistent 

with the model of S as an expected utility maximiser. 

It is consistent with the given interpretation that ℬel and 𝒟es be treated as complete 

models of an agent’s credences and utilities, but this interpretation would only be wise if 

we have good reason to think that ℰ and 𝒪 contain all of the entities towards which the 

subject S has credences and utilities respectively. In Savage’s system, 𝒪 is usually a set 

of propositions which are maximally specific with respect to what the agent cares about, 

so it obviously does not contain all objects of utility. Likewise, in Ramsey’s system, 𝒪 is 

described as containing only possible worlds. A utility function 𝒟es on 𝒪 on either Sav-

age’s or Ramsey’s conception should never be treated as anything more than a partial 

model of an agent’s total utility state. 

The more interesting question much of the time is whether the domain of a theorem’s 

ℬel contains all of the propositions towards which S has credences. As we will see (espe-

cially in §5.3 and §6.1.2), this seems highly unlikely for a wide class of theorems. The 

importance of this point for characterisational representationism has not, so far, been 

noted in the relevant literature. For the most part, it seems to have been presupposed that 
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ℬel (if not 𝒟es) ought to be treated as a complete model—if ℬel(P) is not defined, then 

the agent is represented as lacking any credences towards P. However, to the extent that 

we have good reasons to believe that an ordinary agent will have credences (or utilities) 

towards a class of propositions not covered by a theorem’s ℬel or 𝒟es, we ipso facto have 

good reasons to believe that the theorem cannot tell us what it is to have credences (or 

utilities) towards those propositions. 

So much for the proper interpretation of a CEU theorem; let us now state in general 

form the Decision-theoretic Interpretation of an arbitrary representation theorem, 

whether it be for CEU or NCU: 

 

Decision-theoretic Interpretation 

There is a modelling scheme Ψ that pairs each preference-rational agent S with a paramor-

phic model of S as following some decision rule (with respect to ≽ on ℬ𝒪𝒫) with credences 

at least partially modelled by a function ℬel (with such-and-such properties) and utilities 

at least partially modelled by 𝒟es (with such-and-such properties) 

 

The Decision-theoretic Interpretation tells us that a preference-rational agent can be par-

amorphically modelled in a certain way, and that the model in question is highly accurate 

with respect to capturing the agent’s preferences—or, at least, her preferences over the 

relevant set of basic objects of preference. 

For many philosophers, the interesting question that then arises is whether the model 

is merely paramorphic, or whether it may also be an homomorphic model—that is, 

whether the agent who is modelled like so really is like so with respect to her internal 

mental states and decision-making processes. The proponent of characterisational repre-

sentationism will generally want to say that their favourite representation theorem pre-

sents us with an homomorphic model, at least under certain idealised conditions—and if 

this claim can be justified, then we can use the modelling scheme Ψ to help define what 

it is to have credences and utilities. 



 

 

 

 

CHAPTER THREE 

Classical Characterisational Representationism 

The philosophical relevance of representation theorems has been the subject of some 

scepticism in the recent literature (e.g., Hampton 1994, Peterson 2004, Meacham and 

Weisberg 2011, Easwaran 2014, Dogramaci forthcoming). There are two sides to this 

scepticism, corresponding to the two primary uses to which representation theorems have 

been put. On the one side, there is scepticism regarding their characterisational relevance. 

Meacham and Weisberg, for example, spend most of their (2011) paper criticising the 

idea that “representation theorems play a crucial role in characterising the notions of de-

gree of belief and utility, the graded notions of belief and desire that appear in our folk, 

descriptive and normative theorising” (642)—that is, characterisational representation-

ism.19 On the other side, there is scepticism regarding the normative relevance of repre-

sentation theorems—that is, scepticism surrounding the idea that they might play a crucial 

role in grounding norms such as the principle of expected utility maximisation or the 

thesis of probabilism (that agents ought to be probabilistically coherent).  

In many cases, the two sides to this scepticism can be found together. They are closely 

connected for historical reasons, as those who have tried to apply representation theorems 

for normative purposes have often made crucial appeal to some form of characterisational 

representationism. For example, Savage’s (1954) and (more explicitly) Maher’s (1993) 

representation theorem arguments, which purport to establish both probabilism and the 

norm of expected utility maximisation, rely on versions of characterisational representa-

tionism (see also Christensen 1996, 2001). Indeed, because of the importance of charac-

terisational representationism to representation theorem arguments, scepticism regarding 

the normative relevance of representation theorems often depends upon scepticism re-

garding their characterisational relevance. 

 
19 My usage of ‘characterisational representationism’ derives directly from Meacham and Weisberg’s 

introduction of the name, as here quoted—although they explicitly restrict their criticism to those versions 

of the view based on CEU representation theorems. In practice, their discussion actually seems to target a 

much stronger position still—that S has such-and-such credences and utilities if and only if her preferences 

satisfy (or approximately satisfy, or would satisfy under certain conditions) the preference conditions asso-

ciated with some CEU representation theorem. As will become clear, this is a position that I reject, for some 

of the same reasons that they put forward. However, it is also a position which very few authors (if any) 

have adopted; including, for instance, the obvious targets, e.g., Ramsey, Savage, Maher—see §3.2 for dis-

cussion. 
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An evaluation of the normative relevance of representation theorems is beyond the 

scope of this work; for my own part, I side with the sceptics on the view that there is no 

straightforward argumentative route that begins with a representation theorem and ends 

with an interesting normative thesis like probabilism. The topic of this work concerns the 

characterisational relevance of representation theorems, and on this front I don’t find the 

common reasons for scepticism compelling—especially in lieu of a better alternative.  

This chapter and the next present a defence of characterisational representationism 

against the sceptics. In this chapter, I will outline—and ultimately reject—a number of 

simple versions of characterisational representationism (§3.2–3). This will pave the way 

for more plausible approaches to applying representation theorems in a characterisational 

capacity (discussed in Chapter 4).  

3.1 Measurement and the problem of separability 

It will be helpful to begin with the historical background to characterisational representa-

tionism. The earliest use of a decision-theoretic representation theorem can be found in 

Frank Ramsey’s ‘Truth and Probability’ (1931), which we will discuss in Chapter 7. This 

involved a CEU theorem in particular, which was developed for the purposes of con-

structing a system for the measurement of credences and utilities. Since the 1950s, Ram-

sey’s ideas about measurement have been taken up and developed substantially by phi-

losophers, psychologists, and economists looking to create similar measurement 

procedures (see especially Davidson, Suppes et al. 1957, Krantz, Luce et al. 1971, Chs. 

4-5, Suppes 1974, Davidson 1990, Weirich 2015, 46). In all such cases, representation 

theorems are employed to show how sufficiently rich evidence regarding behavioural 

preference patterns can be used to empirically constrain the range of credence and utility 

states that an agent might be in. We might call this a measurement application of a rep-

resentation theorem. 

Ramsey’s general strategy was to assume that CEU is descriptively accurate with re-

spect to an agent S’s decision-making procedure. Given then that we can empirically as-

certain S’s preferences, Ramsey proposed to determine her credences and utilities using 

the CEU representation theorem that he developed. That is, if S is preference-rational with 

respect to his theorem’s conditions C, then according to the Decision-theoretic Interpre-

tation of that theorem and in light of its Standard Uniqueness Condition, S would be a 

probabilistically coherent expected utility maximiser only if she has credences ℬel and 

utilities 𝒟es—there is only one probability function ℬel which can give rise to her pref-

erences according to CEU, and the only possible 𝒟es functions compatible with her pref-

erences are positive linear transformations of one another. Since we began with the as-

sumption that S does conform to CEU, it follows immediately that we can be confident 

that S has credences ℬel and utilities 𝒟es. To the extent that his initial assumption was 
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justified, Ramsey’s theorem appears to give us a way to work backwards from knowledge 

of preferences to knowledge of credences and utilities. 

Ramsey’s measurement system is a prime example of how representation theorems—

especially those with the Standard Uniqueness Condition—can help supply us with a so-

lution to the classic problem of separability, wherein two distinct quantities usually only 

have observable consequences when in interaction with one another—thus posing the 

problem of how to disentangle their respective influences in order to supply a measure 

for each quantity. In the present situation, this problem is particularly pronounced: ac-

cording to folk psychology, the main effects of credences—i.e., preferences and inten-

tional action—are only manifest when they interact with utilities, and vice versa. As Da-

vidson puts the problem, 

 

If a person’s [utilities] for outcomes were known, then his choices among courses of action 

would reveal his credence; and if his credence [sic] were known, his choices would disclose 

the comparative value he puts on the outcomes. But how can both unknowns be determined 

from simple choices or preferences alone? (1990, 316-7) 

 

For instance, consider the following experiment. An ordinary playing card is placed face-

down on a table in front of a subject S. No information is given about which card it is. 

The experimenter gives the subject two choices: 

 

(a) A banana if the card is numbered; an apple otherwise 

(b) An apple if the card is numbered; a banana otherwise 

 

Suppose that S chooses (a). The problem for the experimenter is to determine why S made 

this choice. Two hypotheses are immediately apparent, each of which presuppose that S 

is maximising her expected utility: either she prefers bananas to apples and is more con-

fident that the card is numbered than that it’s not; or, she prefers apples to bananas and is 

more confident that the card is not numbered. The choice of (a) over (b) does not provide 

any clear evidence for one hypothesis over the other, and yet the two hypotheses offer 

contradictory claims about S’s credences and utilities. Much of the appeal of many rep-

resentation theorems with the Standard Uniqueness Condition originates with their ap-

parent capacity to solve this problem—with enough information surrounding the agent’s 

preferences, these theorems suggest that we can narrow down the range of competing 

hypotheses to what is in effect a unique model of the agent’s credences and utilities. 

So much for the measurement application. Note that while it involves a commitment 

to the epistemological thesis that preferences provide information about credences and 

utilities, the use of representation theorems in this capacity does not carry any commit-

ment to the metaphysical thesis that credences and utilities are characterisable largely in 

terms of preferences. Historically, however, characterisational representationism has 
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been only a small step on from a Ramseyan measurement application (though perhaps a 

giant leap for philosophers).  

Many historical proponents of characterisational representationism have been sympa-

thetic to some form of operationalism and/or behaviourism with regards the psychological 

attributes. Ramsey himself seems to have wanted his preference conditions to underlie 

both a measurement system and a characterisation of credences, asserting that the notion 

of graded belief “has no precise meaning unless we specify more exactly how it is to be 

measured” (1931, 167). The main difference between characterisational representation-

ism and the measurement application is that, according to the former, preferences don’t 

just supply good evidence about credences and utilities—rather, having (or being dis-

posed to have) appropriate preference patterns is in some important sense a part of what 

it is to have credences and utilities. 

3.2 Bridging representation and reality 

Let us begin with an outline of a very simple version of characterisational representation-

ism, based on a CEU theorem. Given that an agent is preference-rational with respect to 

some CEU theorem’s conditions C, and given that the theorem has a sufficiently strong 

uniqueness condition, we can apply similar reasoning as Ramsey’s to work backwards 

from those preferences to a paramorphic model of the agent as an expected utility maxi-

miser with such-and-such credences and utilities. As many authors have noted, however, 

there is a large gap between the claim that S can be paramorphically modelled in a certain 

way, and the claim that S can be homomorphically modelled in that way.20 Thus, we will 

need to bridge that gap: a story will need to be told about the connection between repre-

sentation and reality. 

As it turns out, there are many stories that characterisational representationists might 

tell. Here is a very naïve approach to bridging the gap: 

 

Naïve Characterisational Representationism 

If S can be paramorphically modelled as following some decision rule under a set of cre-

dences ℬel and utilities 𝒟es, then S has credences ℬel and utilities 𝒟es 

 

If Naïve Characterisational Representationism were true, then every paramorphic model 

of S would be, ipso facto, a homomorphic model. In the event that S satisfies the prefer-

ence conditions associated with some CEU theorem, the Decision-theoretic Interpretation 

of that theorem tells us that S can be paramorphically modelled as an expected utility 

 
20 This has been noted, amongst others, by Maher (1993), Zynda (2000), Christensen (2001), Eriksson 

and Hájek (2007), Hájek (2008), and Meacham and Weisberg (2011). 
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maximiser with credences ℬel and utilities 𝒟es—in which case, Naïve Characterisational 

Representationism implies that S has credences ℬel and utilities 𝒟es. 

Naïve Characterisational Representationism is deeply flawed, for reasons pointed out 

by Lyle Zynda (2000). It is easy to show that whenever S can be paramorphically mod-

elled as having credences ℬel and utilities 𝒟es combined in a particular way according to 

a particular modelling scheme Ψ, there will also exist another, radically different model-

ling scheme Ψ* that models S as having a different set of credences and/or utilities, com-

bined according to some other decision rule—indeed, there will usually be infinitely 

many alternative modelling schemes. Simply put, one can make changes in ℬel and 𝒟es 

which are compensated for by changes in the decision rule so as to ultimately produce the 

same overall pattern of preferences. In light of this, Naïve Characterisational Represen-

tationism ends up committing us to assigning to S multiple, radically different and jointly 

inconsistent sets of credences and utilities. 

On one way of looking at it, Zynda’s point is one which folk psychologists and phi-

losophers of mind have known for a long time: there are many different possible psycho-

logical processes which could underlie a given system of preferences. There are, there-

fore, many ways to paramorphically represent agents qua decision-makers. Note again 

that this is not in conflict with the theorem having the Standard Uniqueness Condition: as 

noted in §2.4, uniqueness conditions only specify the range of possible ℬel-𝒟es pairs 

compatible with the agents’ preferences given that ℬel and 𝒟es have certain properties 

and that they are combined in a certain way. 

Taking this into account, another approach to bridging representation and reality might 

go along the following lines, where Ψ is a modelling scheme established by the Decision-

theoretic Interpretation of a CEU theorem: 

 

Classical Characterisational Representationism (CCR) 

If S can be paramorphically modelled under the modelling scheme Ψ as an expected utility 

maximiser with credences ℬel and utilities 𝒟es, then S has credences ℬel and utilities 𝒟es 

 

Classical Characterisational Representationism (or CCR) avoids Zynda’s worry by rela-

tivising to Ψ. The existence of alternative schemes like Ψ* are, on this picture, irrelevant: 

S’s credences and utilities are to be characterised using Ψ, not using some arbitrary mod-

elling scheme Ψ*. Of course, CCR would stand in need of some justification for focusing 

on Ψ rather than Ψ*—perhaps one could argue that the Ψ scheme is simpler or more 

natural, being more in line with our pre-theoretic attributions of credences and utilities to 

ourselves and others.21 Or, perhaps Ψ and Ψ* should be understood as mere notational 

variants, with the choice to focus on Ψ being a matter of convention (cf. Zynda 2000, 

Meacham and Weisberg 2011, 657-60). As Davidson (1991, 210ff) argues, there may be 

 
21 On this idea, see §4.2 below. 
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nothing more to the possibility of multiple modelling schemes than the common phenom-

enon of scale change, seen for example in the fact that there are infinitely many ways (or 

scales) by which to represent the weight, length, or temperature of an object, the choice 

between which is largely a matter of convention. 

I refer to this as the ‘classical’ version of characterisational representationism, though 

it will not be found anywhere in the literature quite as it has been stated here. I am inclined 

to think that the relativisation to a particular modelling scheme is implicit in most discus-

sions by proponents of characterisational representationism—though the reliance on a 

CEU theorem in particular is often made very explicit. That any agent with any set of 

preferences can be paramorphically modelled in innumerable ways is pre-theoretically 

obvious—the charitable position to take is that historical proponents of characterisational 

representationism were restricting their attention to very specific ways (modelling 

schemes) by which to model the preference-rational agent—i.e., as a probabilistically co-

herent expected utility maximiser. This is made somewhat apparent, for example, by 

Frank Ramsey (see §7.1) and in Patrick Maher’s work (discussed more below). 

Note, though, that CCR does rely on the CEU theorem in question having at least the 

Standard Uniqueness Condition: ℬel must be unique, and 𝒟es unique up to positive linear 

transformations. Without this, the theorem would establish the existence of far too many 

modelling schemes, involving distinct and incompatible ℬel functions, but where each 

such scheme would have us model S as an expected utility maximiser. It may be possible 

to justify a preference for one modelling scheme Ψ under which S maximises expected 

utility over another scheme Ψ* under which S is modelled as following a relatively unin-

tuitive decision rule—but where there are multiple ways to model S as an expected utility 

maximiser, the choice of one way over the other would seem arbitrary at best. 

CCR is a conditional claim, leaving open what we might say in the event that S does 

not satisfy the theorem’s preference conditions; it only asserts that being modellable in a 

particular way is sufficient for having a particular set of credences and utilities. I suspect 

that most historical proponents of characterisational representationism would reject the 

idea that the satisfaction of their favourite CEU theorem’s preference conditions is a nec-

essary condition for having credences and utilities. In particular, they would reject the 

following: 

 

Extreme Characterisational Representationism 

S has credences ℬel and utilities 𝒟es iff S can be paramorphically modelled under the mod-

elling scheme Ψ as an expected utility maximiser with credences ℬel and utilities 𝒟es 

 

For example, Savage is clear that the conditions of his theorem are only meant to 

characterise a “highly idealised subject” (see his 1954, 5-7). Savage clearly supposes that 

ordinary, non-ideal folk also have reasonably specific credences and utilities with regards 

a great many propositions—the instrumental value of his decision-theoretic framework 
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requires as much—so one can charitably assume that Savage didn’t believe that his pref-

erence conditions were necessary for having credences and utilities. 

For a complete account of the nature of the graded attitudes, a proponent of CCR would 

need to give some story for agents who don’t satisfy the relevant theorem’s conditions (if 

it’s supposed that such agents have credences and utilities at all).22 A first pass suggestion 

along these lines would be to appeal to what would be the case were the agent to satisfy 

the conditions: 

 

S has credences ℬel and utilities 𝒟es iff, if S were preference-rational, then S would be 

paramorphically modelled, by Ψ, as an expected utility maximiser with credences ℬel and 

utilities 𝒟es 

 

Pettit (1991) seems to suggest something along these lines, and the idea is critiqued by 

Meacham and Weisberg (2011, 650-1). A nearby—and I think, more plausible—sugges-

tion would be to characterise an agent’s credences and utilities using the representations 

assigned to the preference-rational agent(s) that they most closely approximate:23 

 

S has credences ℬel and utilities 𝒟es iff (i) S approximates at least one preference-rational 

agent, and (ii) the preference-rational agent(s) that S most closely approximates can be 

paramorphically modelled, by Ψ, as an expected utility maximiser with credences ℬel and 

utilities 𝒟es 

 

To the extent that the ordinary agent does not even come close to being preference-ra-

tional—for instance, if the theorem’s preference conditions were excessively demanding 

and unrealistic—the two foregoing suggestions seem implausible. After all, why should 

the preferences of some hypothetical preference-rational agent S* matter for the determi-

nation of S’s own credences and utilities, if S* is not at all similar to S? In any case, the 

key point to recognise for our purposes is that both of these suggestions end up implying 

CCR: If S is preference-rational, then she most closely approximates herself, and the 

nearest possible world where she is preference-rational is the actual world—so in either 

case Ψ would model her as having credences ℬel and utilities 𝒟es. 

 
22 Furthermore, an account would be needed for credences and/or utilities towards any propositions P 

which fall outside of the domains of ℬel and 𝒟es, if any such credence/utility states exist. Let us set aside 

issues relating to this point for now. 

23 In order to develop this latter suggestion, one would of course need a measure of the degree to which 

one system of preferences approximates another, a statement of when S approximates a preference-rational 

agent enough, and something to say in the event that S most closely approximates more than one preference-

rational agent. I am intentionally leaving the notion of closeness (or approximation) with respect to satis-

fying preference conditions intuitive and vague—the points I wish to make do not depend on the details of 

any specific measure. 
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Patrick Maher—perhaps the most visible proponent of characterisational 

representationism in recent decades—provides an account of credences and utilities that 

is designed to apply to all agents, not just those who satisfy the preference conditions of 

his CEU theorem (see esp. his 1993). Maher adopts an interpretivist picture very similar 

to Lewis’ position in his (1974)—discussed in more detail in §4.2—according to which: 

 

An attribution of [degrees of belief] and utilities is correct just in case it is part of an overall 

interpretation of a person’s preferences that makes sufficiently good sense of them and 

better sense than any competing interpretation does. (1993, 9) 

 

Maher argues, however, that an interpretation of an agent’s preferences which treats her 

as a probabilistically coherent expected utility maximiser is, in all cases, a perfect inter-

pretation: 

 

[I]f a person’s preferences all maximise expected utility relative to some [probability func-

tion ℬel] and [𝒟es], then it provides a perfect interpretation of the person’s preferences to 

say that [ℬel] and [𝒟es] are the person’s [credence] and utility functions. (1993, 9) 

 

Maher also implicitly assumes that any such interpretation is uniquely perfect (cf. Hájek 

2008, 805-6)—and given this, his view ultimately implies CCR. Note, though, that it does 

not imply Extreme Characterisational Representationism: Maher does not assume that it 

is generally the case that ordinary agents abide by his theorem’s preference conditions, 

nor does he assume that any ordinary agent is best interpreted as a probabilistically co-

herent expected utility maximiser. It is consistent with his account that no ordinary human 

being is ever preference-rational in the relevant sense. 

3.3 Problems with Classical Characterisational Representationism 

Naïve, Extreme, and Classical Characterisational Representationism have been the main 

focus of criticisms against characterisational representationism. In a recent critical re-

view, Meacham and Weisberg (2011) present a number of arguments against five varia-

tions on the basic theme of characterisational representationism, each of which entail the 

classical version—and the majority of problems that they raise result from this entailment 

(and are summarised below). The same can be said more generally: Objections to char-

acterisational representationism often come in the form of arguments against either Naïve, 

Extreme, or Classical Characterisational Representationism. See, for example, the critical 

arguments of Hampton (1994), Christensen (2001), Hájek and Eriksson (2007), Hájek 

(2008), and Easwaran (2014). 

In the rest of this section, I will discuss the main concerns which have been raised in 

the literature (along with some additional concerns of my own). These I have divided into 
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two classes: Those which arise from the very strong connections that these views posit 

between preferences, credences, and utilities (§3.3.1), and those which arise from the use 

of CEU theorems in particular (§3.3.2). 

3.3.1 The connection with preferences 

There are, I think, good reasons to reject CCR and any view which entails it. Perhaps the 

most common concern is that CCR suggests (and is often held by those with) an anti-

realist stance towards the graded propositional attitudes. That is, CCR implies that having 

certain preferences is sufficient for having such-and-such credences and utilities, as 

though being in those latter kinds of state were nothing over and above being in a partic-

ular kind of preference state. In Joyce’s words, CCR can “foster a kind of pragmatism 

that sees belief [or credence] as a second-class propositional attitude that can only be 

understood in terms of its relationship to desire [or preference]” (1999, 89).24 The worry 

is even more apparent with Extreme Characterisational Representationism, or with the 

suggested approximation-based extension of CCR outlined above—according to either 

view, to have credences and utilities at all just is to have a particular pattern of prefer-

ences.  

Worse still, where a theorem’s ≽ is understood behaviouristically (as it’s usually in-

tended to be), these positions suggest an outdated form of behaviourism—that there is 

nothing more to having credences and utilities than behaving (or being disposed to be-

have) in a particular kind of way. Such a position is contrary to our shared, pre-theoretic 

conception of these things, where our credences and basic utilities for outcomes are un-

derstood as each playing a part in the causal explanation of our choices. On intuitive 

grounds, this strongly suggests that credences, utilities, and preferences (whether under-

stood mentalistically or behaviourally) should be kept conceptually and metaphysically 

separated (cf. Joyce 1999, 21-2). 

There is, I think, another problem here, and one which goes beyond a simple knee-jerk 

reaction to the anti-realism or behaviourism suggested by CCR. The (necessary) prefer-

ence conditions of a CEU theorem are most plausibly read as normative constraints on 

preferences. Descriptively, however, ordinary agents frequently fall foul of basic norms 

of rationality (whether for systematic or non-systematic reasons), and this creates prob-

lems for CCR. Importantly, it’s immensely plausible that ordinary agents will sometimes 

fail to have preferences that maximise their expected utility, given their credences and 

utilities. This means, for one thing, that an agent might have probabilistically coherent 

credences ℬel and utilities 𝒟es but not have expected utility maximising preferences. 

 
24 Note that how Joyce officially defines ‘pragmatism’ makes it the meta-normative claim that epistemic 

norms are grounded in practical norms (the “laws of desire”). This kind of view perhaps makes the most 

sense under an anti-realist or behaviouristic construal of credences in terms of behavioural preferences, but 

it need not be committed to those construals. 
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More importantly, it means that an agent might, due to some irrational state of mind, have 

preferences which could be paramorphically modelled as maximising expected utility rel-

ative to some ℬel-𝒟es pair despite not having credences ℬel or utilities 𝒟es. In effect, 

CCR allows for no wriggle room between preferences on the one hand and credences and 

utilities on the other, in the event that those preferences satisfy the relevant theorem’s 

conditions. It implies that it’s impossible for anyone to be preference-rational by acci-

dent—that, whenever someone’s preferences conform to the conditions, it must be be-

cause they were acting rationally given their credences and utilities. CCR implies that 

irrational agents cannot satisfy a CEU theorem’s preference conditions, and this seems 

utterly unmotivated. 

There are some obvious changes that one could make to CCR to loosen the connection 

it posits between preferences on the one hand, and credences and utilities on the other. 

For reasons that I will return to shortly, I doubt that these will be quite enough, but it’s 

worth highlighting them briefly first. To begin with, we might contrast CCR with the 

following account, inspired by Lewis (1980a): 

 

S has credences ℬel and utilities 𝒟es iff S is in some psychophysical state R*, where R* 

would tend to cause a typical subject S′ to be preference-rational such that she would be 

modelled, by Ψ, as an expected utility maximiser with credences ℬel and utilities 𝒟es 

 

This kind of view would require that credence states are identifiable independently of 

their functional role—i.e., as a particular neurobiological kind. Like Lewis, one might 

cash out the tends to cause relation by reference to the causal role that R* would play in 

a typical member of some pre-specified population. There are, however, other ways to 

flesh out the relation, which we need not consider here; the important point for our pur-

poses is that it’s not CCR: the fact that an underlying psychophysical state R* tends to 

cause preference-rationality does not mean that whenever the agent is preference-rational, 

they are therefore in R*. Perhaps CCR holds much of the time, or holds for a perfectly 

typical subject, but it need not hold in general. 

The second way in which CCR might be avoided would be to ignore actual preferences 

and instead characterise an agent’s credences and utilities in terms of what preferences 

she would have in some idealised state. We have noted that the ordinary subject will often 

make mistakes, in one way or another failing to have the pragmatically optimal prefer-

ences given her credences and utilities. However, perhaps under some idealised state of 

considered reflection, every agent will conform to decision-theoretic norms: 

 

S has credences ℬel and utilities 𝒟es iff where S in ideal conditions (e.g., she is functioning 

properly in a normal environment, free from interfering influences such as intoxication, 

time pressures, and so on), then S would be paramorphically modelled, by Ψ, as an expected 

utility maximiser with credences ℬel and utilities 𝒟es 
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I suspect that something like this is probably true (see §8.5), but as an account of the 

nature of credences it still seems to be missing something. While it may be plausible that 

utilities straightforwardly reduce to particular patterns of preferences (especially where 

‘preference’ is given a mentalistic construal), our credences seem to be a wholly distinct 

and independently existing kind of mental state—and the above two suggestions do not 

yet capture everything which is important about them.  

Importantly, the credences that we have towards specific propositions seems to depend 

strongly on the evidence that we have accumulated regarding to those propositions. How-

ever, there is no accommodation for this connection between credences and past evidence 

in CCR (or any of the proposed refinements). The worry here is expressed nicely in the 

following passage by David Christensen (see also Weirich 2004, 20, for similar remarks): 

 

True, degrees of belief are intimately connected with preferences and choice behaviour. 

But they are also massively and intimately connected with all sorts of other aspects of our 

psychology (and perhaps even physiology). This being so, the move of settling on just one 

of those connections—even an important one—as definitional comes to look highly suspi-

cious. (2001, 362) 

 

Building off of Christensen’s discussion, Meacham and Weisberg make the same com-

plaint: 

 

Given that beliefs have connections to so many mental states besides preference—emo-

tions, perception, memory, and so on—it’s implausible that just one of these connections 

is paramount. With all the pushes and pulls that beliefs and desires are entangled in, we 

should not expect there to be a rigid and straightforward connection between degrees of 

belief, utility, and preference. (2011, 646) 

 

Indeed, CCR could have us assign credences ℬel to an agent on the basis of her prefer-

ences even when ℬel is entirely at odds with what we would expect her credences to be 

like given her life history of evidence. And this result seems unacceptable. 

3.3.2 The use of CEU theorems 

Another frequent cause for concern arises from the use of CEU theorems in particular. 

The focus on CEU theorems is, I suspect, due largely to the attention philosophers have 

given to characterising the credences of ideally rational agents. The use of CEU theorems 

has been the grounds of two basic criticisms, which I will discuss in turn. 
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The first criticism is that ordinary agents do not satisfy the preference conditions as-

sociated with standard CEU theorems. This complaint plays a prominent role in the crit-

ical discussions found in (Hampton 1994), (Meacham and Weisberg 2011), and 

(Dogramaci forthcoming). Much of the relevant empirical work is summarised in 

(Tversky 1975), (Camerer 1995), (Schmidt 2002), and (Johanna, Jeleva et al. 2012). The 

most widely cited evidence here originates with Allais (1953) and Ellsberg (1961). 

Kahneman and Tversky (1979) outline experimental results which (they argue) imply that 

ordinary decision makers in the kinds of decision situations that Allais outlined don’t 

always adhere to Savage’s sure-thing principle, which is a common independence condi-

tion found in many CEU theorems (see §5.1.2). The adequacy of other independence 

conditions also comes under attack from (Birnbaum and Chavez 1997) and (Birnbaum 

and Beeghley 1997). Some authors have also purported to show through so-called pref-

erence reversal experiments that ordinary agents’ preferences are intransitive 

(Lichtenstein and Slovic 1971, 1973, Fishburn and LaValle 1988).25 

It is perhaps not so worrying if most agents don’t satisfy the CEU conditions exactly, 

so long as they come close to satisfying those conditions (in which case we might appeal 

to the preference-rational systems they most closely approximate). One reason to think 

that ordinary agents’ preference don’t vary greatly—or at least, greatly and systemati-

cally—from CEU-consistent preferences is that many predictive models in economics 

and the social sciences essentially treat the average decision-maker as having the kinds 

of preferences associated with expected utility maximisers, or thereabouts.26 

Even descriptive decision-theoretic models that are explicitly designed to accommo-

date the empirical evidence for our deviations from CEU bear a close resemblance to that 

theory: with few exceptions, they involve a ℬel function (which is at least a capacity if 

not a probability function) and a utility function combined in something like expectational 

form, with the basic decision-making principle being that an agent will pick the option 

which has the highest ℬel-weighted average utility. This is essentially the case, for exam-

ple, of Kahneman and Tversky’s (1992) cumulative prospect theory, which is widely con-

sidered to be the most empirically accurate decision model so far developed. (See Appen-

dix B for more details.)  

 
25 The vast majority of the empirical work has focused on whether ordinary agents satisfy the necessary 

conditions associated with CEU theorems; whether they always satisfy the non-necessary, structural con-

ditions is generally taken to be relatively unimportant. The main reason for this attitude will be discussed 

in §5.2.4. 

26 The general point here goes back at least to Fodor (1987), who argued that folk psychology (which is 

in many respects very close to orthodox expected utility theory) is presupposed so widely within our best 

explanations of behaviour that it is likely to be at least broadly correct. 
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There may be some bells and whistles added, or some relatively minor deviations from 

strict requirements of rationality here and there, but—as a rule—NCU models of deci-

sion-making are generalisations of the traditional CEU models. Consequently, the pref-

erence conditions which underlie NCU representation theorems tend to be weaker ver-

sions of the conditions underlying CEU theorems.27 It would be a mistake to infer from 

the apparently vast amount of evidence that we don’t satisfy the preference conditions for 

a CEU theorem that we are therefore far from satisfying those conditions. If anything, the 

evidence that we have suggests exactly the opposite conclusion. 

The second concern that commonly arises from the specific appeal to CEU theorems 

concerns the empirical plausibility of the decision-making models that CEU theorems 

generate. There are two sub-issues to distinguish here. The first concerns whether ordi-

nary agents can be plausibly understood as expected utility maximisers, especially given 

the range of alternative psychological models of our decision-making processes. As I’ve 

just noted, these other models do tend to be very similar in their broad structure to clas-

sical expected utility theory—but the point is nevertheless sound: ordinary agents are 

probably not expected utility maximisers across the board.28 

The second (and closely related) sub-issue results from the fact that CEU theorems are 

fundamentally limited in their capacity to represent credence states, requiring as they do 

that ℬel is a probability function. The complaint, of course, is that if ordinary agents are 

not probabilistically coherent then no probability function can faithfully model her total 

credence state—and there are many ways that one could fail to be probabilistically coher-

ent. A version of this complaint has been raised in most critical discussions of character-

isational representationism. 

There is an important background assumption being made here, which is that the ℬel 

of any ordinary CEU theorem must be understood as being defined on some algebra of 

sets 𝒫 defined on a space of possible worlds, 𝒲 (or in the case of Savage-like theorems, 

a space of possible states of affairs, 𝒮). For any such probability function, the following 

conditions will hold: 

 

(i) Logical omniscience: ℬel(⊤) = 1 for any necessary proposition ⊤ ∈ 𝒫, and ℬel(⊥) = 0 for 

any impossible proposition ⊥ ∈ 𝒫 

(ii) Additivity: ℬel(P & Q) = ℬel(P) + ℬel(Q), for any logically incompatible pair of propo-

sitions P, Q ∈ 𝒫 

 
27 More specifically, many NCU theorems essentially result from various ways of weakening the pref-

erence conditions found in Savage’s CEU theorem. 

28 It is hard, however, to find any proponent of characterisational representationism whose view com-

mits them to asserting that all agents are at all times expected utility maximisers—that commitment doesn’t 

follow from CCR, but requires something more like Extreme Characterisational Representationism. 
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(iii) Monotonicity: If P, Q ∈ 𝒫, then ℬel(P) ≥ ℬel(Q) if Q ⊢ P (corollary: if P and Q are 

logically equivalent, then ℬel(P) = ℬel(Q))29 

 

Individually, each of (i) to (iii) seems an implausible condition to impose upon a model 

of an ordinary agent’s credences; they only seem reasonable for deductively infallible, 

hyper-rational beings, who recognise all the logical implications of every proposition they 

contemplate. (i) is clearly too strong: there are many logical or mathematical truths of 

which I am not certain, and many logical or mathematical falsehoods to which I give 

some positive credence. There is, furthermore, a wealth of empirical evidence against the 

descriptive plausibility of both (ii) and (iii), which I will not repeat here—though see 

especially (Tversky and Kahneman 1974).  

Philosophers routinely assume that failures of (i) to (iii) are typical of ordinary 

agents.30 (Otherwise, there would be little point in arguing so much over whether agents 

ought to be probabilistically coherent!) If this is true, and ordinary agents are generally 

and sometimes quite drastically probabilistically incoherent, then we have a clear prob-

lem for any version of characterisational representationism based solely on a CEU theo-

rem, where ℬel is defined on an algebra constructed from a space of possibilities. 

In §4.3, I will show that a probability function defined on a space of possible and 

impossible worlds (or states) need not satisfy any of the conditions (i) to (iii). The im-

portant question, though, is whether the Decision-theoretic Interpretation of any CEU 

theorem is compatible with this understanding of the domain of its probability function. 

There seems to be no good reason for supposing that Jeffrey’s set 𝒲 must be composed 

of possible worlds only. On the other hand, it’s less clear whether letting Savage’s set 𝒮 

include impossible states sits well with the rest of his framework. Further discussion of 

these issues, however, will have to await a more detailed look at the relevant theorems. 

3.4 Desiderata 

We have seen three broad kinds of complaints that have been raised against CCR and the 

positions which imply it. First of all—and, I think, most importantly—it’s very plausible 

that credences and utilities ought to be kept metaphysically and conceptually distinct from 

preferences. Having a credence of x in P, in particular, is not just a kind of preference 

 
29 Given (i), monotonicity is of course implied by additivity; however, it is useful to distinguish the two 

properties here—particularly because Choquet capacities satisfy monotonicity without always satisfying 

additivity. 

30 There is some doubt on this front—see especially (Lewis 1982, 1986, 34-6) and (Stalnaker 1984). I 

have neglected to discuss their proposed solutions to ‘the problem of logical omniscience’ here as accepting 

that ordinary agents’ credences satisfy (i) to (iii) comes at a high intuitive cost, and (moreover) because I 

do not think characterisational representationism is committed to the idea that ordinary agents must be 

probabilistically coherent. 
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state. There needs to be some wriggle room between the two kinds of states; credences 

appear to give rise to preferences, but not with invariable certainty, and not always 

through expected utility maximisation. Furthermore, credences seem to play other roles 

besides their role in the production of preferences—for instance, they change in response 

to evidence—and this needs to be accounted for in any adequate characterisation of what 

it is to have credences. One of the central roles of Chapter 4 is to show that characterisa-

tional representationism can accommodate this lesson. 

The second kind of complaint arises from the details of the theorems which underlie 

CCR. These decompose into two basic issues: first, whether ordinary agents satisfy (or 

come sufficiently close to satisfying) the relevant theorems’ preference conditions; and 

second, whether the ensuing models of their credences, utilities, and decision-making 

process are plausible.  

Supposing that we were to remove CEU theorems from consideration, the obvious 

alternative for characterisational representationism would be to appeal to some NCU the-

orem. NCU theorems are, for the most part, explicitly designed to capture the preference 

patterns of ordinary agents, and many of them allow for non-probabilistic credence func-

tions. Typically, NCU theorems achieve this with weaker preference conditions than 

those found in CEU theorems—that is, preferences which satisfy the CEU conditions will 

also satisfy the NCU conditions, but not vice versa. By setting weaker and more realistic 

preference conditions and allowing for a broader range of representations, NCU theorems 

should look like a very attractive place to search for a firmer basis for characterisational 

representationism. 

Of course, not any NCU theorem will do—we need a theorem with the right proper-

ties. To close this chapter, then, I want to say in more general terms what kinds of features 

a representation theorem should have, if it is to underlie a more plausible version of char-

acterisational representationism. I will begin with a very schematic discussion of some 

basic conditions on any characterisation of credences and utilities. 

Any minimally realist account of what it takes to have such-and-such credences and 

utilities can be put very schematically as follows: 

 

S has credences ℬel and utilities 𝒟es iff S satisfies conditions N 

 

Now, first of all, for any plausible account it ought to be the case that: 

 

Satisfiability 

Ordinary agents generally satisfy conditions N 
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If Satisfiability is not satisfied, then the account is unable to explain how it is that ordinary 

agents have the credences and utilities that they do. Secondly, the account ought to be 

plausible: 

 

Plausibility 

The ℬel and 𝒟es assigned to S under conditions N are plausible models of S’s credences 

and utilities, in the sense that they broadly coincide with our intuitions/empirical data re-

garding what credences and utilities an ordinary agent would have in those conditions 

 

If Plausibility is not satisfied, then we have good reason to think that the account is not 

picking out those intentional states which we understand to be credence and utility states, 

nor anything in the vicinity. Note that perfect fit with our intuitive judgements is not 

required to satisfy this second condition: there is always some room to move away from 

what is intuitive, if such manoeuvres are well motivated.  

Thirdly, the account should not be circular: 

 

Non-Circularity 

N ought to specifiable without reference to S’s credences or utilities 

 

If Non-Circularity is not satisfied, then the characterisation is obviously at least somewhat 

circular, requiring prior knowledge of S’s credences and/or utilities before being able to 

specify what her credences and utilities are. 

Furthermore, if the goal is to generate a fully naturalistic account, then the following 

should be satisfied: 

 

Naturalisability 

N ought to be specified by reference only to natural or readily naturalisable properties 

 

Paradigm instances of concepts which are not readily naturalisable include the semantic, 

intentional, and other mental concepts—hence the focus on naturalising intentionality, 

rather than (say) the property of being a teacup. 

The advocate of characterisational representationism seeks to make essential use of a 

representation theorem in her characterisation of credences and utilities. Specifically, she 

thinks that the modelling schemes generated by such a theorem can tell us a great deal 

about what an ordinary agent’s credences and utilities are, and how she forms her deci-

sions, given enough information about the agent’s preferences (in either the mentalistic 

or behavioural sense). As I will argue in Chapter 4, there need not be any simple and 

straightforward relationship between how an agent can be modelled according to the the-

orem and what her mental states actually are—CCR is not the only game in town—but 
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there must nevertheless be a close relationship between the modelling scheme and the 

mental facts of the matter, if the view is to count as an instance of characterisational rep-

resentationism. 

Our three conditions, Satisfiability, Plausibility, and Non-Circularity, therefore, can be 

used to generate a number of basic desiderata that we might want a representation theorem 

to satisfy, if it is to provide a plausible foundation for the characterisational representa-

tionist’s project. Naturalisability, likewise, generates a further desideratum for naturalis-

ers. These desiderata are summarised in §3.4.5 below. 

3.4.1 The theorem’s condition’s satisfiability 

Given Satisfiability, it’s clear that a representation theorem will only be useful for the 

purposes of characterisational representationism to the extent that its preference condi-

tions are satisfied—or at least approximately satisfied—by ordinary agents, at least under 

appropriately specified conditions. 

An absolutely minimal requirement, then, is that the theorem’s preference conditions 

are (approximately) satisfiable. (In what follows, I will set aside the ‘approximately’ qual-

ifier for ease of reading.) As we will see in §5.2.1–2 and to a lesser extent §7.2.2, we 

should not take it for granted that the conditions placed on <ℬ𝒪𝒫, ≽> can be satisfied by 

any agent’s preference system. As noted in §2.4, the fact that <ℬ𝒪𝒫, ≽> is intended to 

represent a possible preference system is not sufficient reason to assume that it does so. 

Formally characterised, ≽ and/or ℬ𝒪𝒫 may have properties which would make no sense 

under the intended interpretation. In particular, ≽ may end up being defined on a collec-

tion of entities which bear no resemblance to what might reasonably be considered a set 

of basic objects of preference, under any conception of ‘preference’. 

Supposing, then, that the representation theorem’s conditions are satisfiable, we can 

consider whether the conditions are satisfied. Characterisational representationism, based 

on a given representation theorem T, is more plausible to the extent that T’s preference 

conditions actually are satisfied by the average person on the street, at least under appro-

priately specified conditions. If no ordinary agent (in the right conditions) ever satisfies 

the T’s conditions for representation, even approximately, then the theorem would seem 

to have nothing interesting to tell us about the credences and utilities of ordinary agents.  

To be sure, if some kind of idealised being were to satisfy the conditions, then the 

theorem may have something to say about their credences and utilities—but characteri-

sational representationism is a thesis about the credences and utilities in general, not just 

the mental states of an idealised subject who (by hypothesis) does not even come close to 

having an ordinary preference system. I will discuss this point further below. 
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3.4.2 The plausibility of ℬel, 𝒟es, and the decision rule 

To the extent that a theorem’s modelling scheme is to provide information towards 

agents’ actual total credence and utility states, its ℬel and 𝒟es ought to be adequate qua 

models of those states.31 Furthermore, the overall model of the agent qua decision-maker 

should be plausible, in light of what we know about ordinary agents and how they make 

decisions. 

For instance, suppose that S satisfies theorem T’s preference conditions, such that T’s 

implies she can be paramorphically modelled as having credences ℬel and utilities 𝒟es 

combined according to some rule ℛ. Such information only seems valuable for the char-

acterisational representationist if ℬel and 𝒟es are not wildly at variance with what we 

would expect S’s credences and utilities to be, and ℛ is not wildly at variance with how 

we would expect S to form her preferences, under the relevant circumstances. (Even if 

the ℬel and 𝒟es are plausible, if T represents S as an expected utility minimiser then 

something has obviously gone very wrong!) Characterisational representationism is more 

plausible to the extent that the theorem upon which it is based supplies plausible models 

of our mental states and decision-making procedures; where this doesn’t hold, it would 

seem unreasonable to connect the theorem’s ℬel and 𝒟es functions in any close way to 

agents’ actual attitudes. The further the theorem’s models are away from reality, the less 

plausible it is that those models might play any important role in characterising the reality. 

Let us see if we can specify some more specific requirements for the plausibility of 

ℬel and 𝒟es. To begin with, I take it as a conceptual truth that (just as beliefs are relations 

between an agent and a proposition) credences are relations between agents, propositions, 

and levels of confidence. So, at minimum, ℬel should connect propositions (or entities 

which closely correspond to propositions) to a measure of confidence. It is plausible that 

𝒟es ought to take a similar structure—i.e., it ought to connect propositions to a measure 

of desirability—and throughout this work I have been treating 𝒟es as a mental state with 

propositional content. This presupposition does not figure very heavily in the discussion 

that follows. 

I do assume, however, that the set of potential objects of credence and the set of po-

tential objects of utility are not wholly disjoint. That is, it seems reasonable to suppose 

that any proposition towards which an agent has credences is also a proposition towards 

which she could have utilities, and vice versa. There may be a small number of exceptions 

to this rule, but even granting such exceptions it seems reasonable to require that the 

domains of our ℬel and 𝒟es functions could feature a substantial degree of overlap. 

 
31 Note, again, that these are merely desiderata—just as Plausibility is malleable in the light of other 

theoretical considerations such as simplicity or theoretical fruitfulness, so too should we allow for some 

wriggle room between pre-theoretic intuitions and our formal models of credences and utilities. 
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We can remain non-committal for now on the nature of propositions; for instance, on 

whether they are sets of (metaphysically/epistemically/conceptually) possible worlds (as 

in Lewis 1986, Stalnaker 1984, 2008), sets of centred worlds or properties (Lewis 1979, 

Jackson 2010), structured n-tuples of objects and properties (Soames 1987), or otherwise. 

Whatever the exact nature of propositions, though, it’s reasonable to suppose that they 

ought to be fine-grained enough to capture the hyperintensionality of our credences and 

utilities. It is plausible, for instance, that one might have a particular degree of confidence 

in the claim that water is wet, without having the same confidence in the claim that H2O 

is wet. Reasons in favour of this claim are discussed in some detail in (Chalmers 2011) 

and (Jackson 2009). Similar intuitions suggest that one might have different degrees of 

confidence towards logically and mathematically equivalent claims; for instance, I am far 

more certain that 1 + 1 = 2 than I am in the truth (or falsity) of Goldbach’s conjecture. 

Thus, it is reasonable to expect that ℬel and 𝒟es ought to be able to distinguish between 

metaphysically equivalent—and perhaps even logically and mathematically equivalent—

objects of thought. 

However we understand propositions, ℬel and 𝒟es should also be capable of assigning 

values to all and only the propositions that we take ourselves to potentially have credences 

and utilities towards. To be sure, according to the Decision-theoretic Interpretation, ℬel 

and 𝒟es may only be partial models of an agent’s credences and utilities respectively—

but if characterisational representationism is going to define what it is to have credences 

and utilities in general by means of a given theorem’s representation scheme then ℬel 

and 𝒟es had better not leave out too much. (For further arguments on this, see §5.3.1 and 

§6.1.2.) 

It is an interesting (and to my knowledge unsettled) question whether there are any 

propositions towards which we cannot have credences or utilities. I will here briefly con-

sider one suggested restriction; other potential restrictions on ℬel and 𝒟es will be dis-

cussed in later chapters when they become relevant. In particular, the suggestion I want 

to consider is that some propositions may be too complex to be contemplated (where the 

complexity of a proposition seems to correspond roughly to the complexity of a minimal 

sentential expression of the proposition in a natural language). If this is so, then we may 

simply lack credences and utilities towards such propositions. However, to the extent that 

this limitation exists, it seems to only apply to non-ideal agents with limited cognitive 

capacities; it does not seem to apply to more idealised agents, and presumably character-

isational representationism should account even for the ideal case. This suggests that ℬel 

and 𝒟es ought to be flexible, in the sense that they should be capable of representing 

credences and utilities towards highly complex propositions, but also capable of repre-

senting an absence of credences and/or utilities towards such things. 

Finally, it’s worth recalling one of the lessons of §3.3: Where ℬel can only take the 

form of a probability function—or more specifically, a probability function defined on an 
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algebra constructed from a set of possibilities—it seems unlikely it could adequately rep-

resent the credences that ordinary agents have towards many propositions (even if those 

agents were to satisfy the theorem’s conditions). Similar complaints arise even if ℬel is 

only a Choquet capacity. Such functions are only adequate for logically omniscient agents 

with monotonic (if not additive) and infinitely precise credences. Furthermore, capacities 

and probability functions satisfy strong closure conditions; viz., they are closed under 

complementation and under (at least finite) unions. 

There is, then, another sense in which ℬel ought to be flexible: It should not be limited 

to probability functions, capacities, or any other kinds of function with excessively re-

strictive conditions that severely limit their applicability qua models of ordinary agents’ 

credences. 

3.4.3 The uniqueness condition 

A related factor to consider is the strength of the theorem’s uniqueness condition. It is 

pre-theoretically implausible that individual agents’ credences and utilities (at a time) can 

be adequately represented by a wide range of highly divergent (and potentially contradic-

tory) pairs of ℬel and 𝒟es functions.32 To the extent that our credence and utility states 

are unique, any plausible model of those states ought to be unique. 

But this truism does not translate into a requirement that the theorem upon which we 

base characterisational representationism must have strong uniqueness results. As we will 

see in Chapter 4, characterisational representationists can appeal to information that goes 

beyond agents’ (actual or counterfactual) preferences, which might be used to narrow 

down the range of potential interpretations whenever a representation theorem does not 

deliver strongly unique results. The requirement that we represent an agent as having 

relatively unique credences and utilities does not translate into a requirement that the the-

orem upon which we base constitutive representationism must have strong uniqueness 

results. Nevertheless, the extent to which ℬel and 𝒟es are unique is an important factor 

in the evaluation of a representation theorem qua basis for characterisational representa-

tionism, as the strength of the theorem’s uniqueness result impacts upon what kinds of 

connections can be drawn between the theorem’s modelling scheme and the mental facts 

of the matter. 

The large majority of theorems to be considered in the remainder of this work have the 

Standard Uniqueness Condition; for this reason, the uniqueness desideratum does not play 

 
32 Those who accept that agents can at one time have multiple, fragmented systems of belief might deny 

this point (cf. Lewis 1982). However, the kind of non-uniqueness that these theorists claim to exist is con-

ceptually quite distinct from the kind of non-uniqueness we are discussing here: these theorists are usually 

motivated to appeal to fragmented belief states when a single coherent belief state cannot explain an agent’s 

apparently irrational behaviour and preferences, whereas we are now looking at a situation where multiple 

belief states can each individually be used to explain the agent’s behaviour/preferences equally well. 
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a large role in most of the critical discussions that follow. The major exception is Jeffrey’s 

(1990) theorem where the ℬel-𝒟es pair is only unique up to a fractional linear transfor-

mation. I discuss what a characterisational representationist might do with this weaker 

uniqueness condition in §6.2.2. 

3.4.4 The interpretation of the theorem’s primitives 

The point of characterisational representationism is to define what it is to have such-and-

such credences and utilities largely in terms of preferences, by appeal to a representation 

theorem. If any such project is to be successful, then the basic notions involved in the 

interpretation of those theorems cannot themselves be understood in terms of credences 

or utilities. Generally speaking, if the goal is to define X in terms of Y, then it had better 

not be the case that Y is to be understood, in turn, in terms of X. Thus, from the Non-

Circularity condition, we see that if characterisational representationism is to be founded 

upon some theorem or other, it’s a minimal requirement upon that theorem that it can be 

interpreted without reference to agents’ credences and utilities.33 

There are at least two basic formal elements to any representation theorem: a prefer-

ence relation ≽, and a set ℬ𝒪𝒫 of objects of preference. Often, ℬ𝒪𝒫 is itself constructed 

from a number of further sets. If a given representation theorem is to satisfy the present 

Non-Circularity condition, then neither ≽, nor ℬ𝒪𝒫, nor any other primitive elements 

involved in the statement of the theorem should be given an interpretation which requires 

reference to credence or utility states. For instance, it would obviously not do for charac-

terisational representationism to define ≽ as follows: 

 

x ≽ y (relative to an agent S) iff S has a higher utility for x than for y 

 

Likewise, suppose that ℬ𝒪𝒫 is supposed to represent a collection of gambles conditional 

on a proposition P, where it’s required that the agent has a particular credence value n for 

P (e.g., n = 0.5). Unless we already know what it is to have credence n in P, preferences 

over such bets will not be very useful in the characterisation of what it is to be in such-

and-such a credence state more generally. 

Furthermore, from the Naturalisability condition we know that if we are to provide a 

naturalistic characterisation of what it is to be in certain credence and utility states, and if 

 
33 To be clear, some philosophers are happy to countenance non-reductive definitions of important con-

cepts, wherein the definiendum forms part of the definiens. I am assuming, however, that the goal of char-

acterisational representationism (and preference functionalism more generally) is reductive. Recall that 

much of the appeal that characterisational representationism holds is due to its promise to solve the old 

philosophical problem that arises from the interdefinability of credence and utility (or belief and desire). 
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a representation theorem is to play a central role in that characterisation, then the basic 

notions of the theorem should be naturalistic—or at least readily naturalisable. 

3.4.5 Summary 

Let us summarise. The following desiderata are important for characterisational represen-

tationists generally (whether naturalistic or non-naturalistic); subsidiary desiderata are 

also listed: 

 

(1) The theorem’s preference conditions should be satisfied (or approximately satisfied) by 

the majority of ordinary human agents (at least under appropriately specified circum-

stances). 

(1a) The theorem’s preference conditions must be satisfiable. 

(2) Assuming that S is an ordinary agent and satisfies T’s preference conditions, T should 

provide a plausible (if slightly idealised) homomorphic model of S’s credences, utilities, 

and preference-forming procedure. 

(2a) ℬel and 𝒟es ought to be capable of assigning values to (more or less) the same prop-

ositions, rather than having distinct, non-overlapping domains. 

(2b) ℬel and 𝒟es ought to be capable of modelling hyperintensional credences and utili-

ties—they ought to be capable of distinguishing and assigning distinct values to met-

aphysically—and perhaps even logically and mathematically—equivalent objects of 

thought. 

(2c) ℬel and 𝒟es ought to assign values to all and only the objects of thought towards 

which the relevant agent has credences and utilities, respectively. 

(2d) ℬel ought to be capable of modelling the total credence states of non-ideal reasoners 

with potentially indeterminate or imprecise credences; it should not be restricted to 

models of agents who are probabilistically coherent, logically omniscient, deduc-

tively infallible, and so on. 

(2e) The manner by which ℬel and 𝒟es combine to determine preferences should be plau-

sible, under the relevant circumstances. 

(3) The theorem should have a reasonably strong uniqueness condition. 

(4) It should be possible to understand and specify the basic notions involved in the interpre-

tation of the theorem independently of any prior knowledge regarding the relevant agents’ 

credences and/or utilities. 

 

Furthermore, if a naturalistic variety of characterisational representationism is the goal, 

then a further desideratum is: 

 

(5) The basic notions of the theorem should be naturalistic/readily naturalisable. 
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In Chapters 5 through to 7, I will evaluate a range of theorems in light of these desiderata. 

I will argue that none of them satisfy each of (1) to (4); furthermore, I will argue that none 

satisfy (5). 

(1a), (3), and (4) seem non-negotiable. However, readers might note the emphasis on 

ordinary agents in (1) and (2), and may want to weaken the relevant criteria if their only 

goal is to characterise credences and utilities for ideally rational agents. One might take 

this as part of a two-step strategy for characterising credences and utilities in general: 

first give an account for the ideal case, and then ‘de-idealise’ so that it applies to ordinary 

agents. Taking this line may suggest replacing (1) and (2) with: 

 

(1′)  The theorem’s preference conditions should be satisfied (or approximately satisfied) by 

ideally rational agents in idealised conditions. 

(2′) Assuming that S is ideally rational and satisfies T’s preference conditions, T should pro-

vide a plausible homomorphic model of S’s credences, utilities, and preference-forming 

procedure. 

 

We can plausibly assume that ideally rational agents are probabilistically coherent, hence 

adopting (2′) might suggest relaxing (2b) and (2d) in particular. Furthermore, it is plau-

sible that ideally rational agents apply a different decision rule than ordinary agents (or 

the same rule, but better and more consistently), so (2e) would need to be interpreted 

accordingly. 

Something like this two-step strategy for understanding empirical phenomena is ap-

plied throughout the sciences, and I strongly suspect that it will be required for present 

project as well. We should, for instance, certainly focus our attention on properly func-

tioning, species-typical human beings in normal circumstances with slightly idealised 

cognitive processes free from various, well-known confounding factors (e.g., injury, in-

toxication, etc.). In that sense of ‘idealisation’, we should indeed attempt to characterise 

credences and utilities for the ideal case and then see what can be done about de-ideali-

sation. The two-step strategy works best, however, when (i) the relevant idealisations 

don’t leave us vastly removed from the actual, target phenomenon, and (ii) it is reasonably 

clear how to ‘de-idealise’. 

What we are after is a characterisation of credences and utilities in general. It’s hardly 

likely, however, that the metaphysics of credences and utilities is disjunctive, in the sense 

of being one way for ideally rational agents and a wholly different way for ordinary 

agents. So, we should expect any plausible approach to credences and utilities for ideally 

rational agents to be a special case of a more general account for agents of all kinds. Thus, 

if we are going to develop an account of credences and utilities for ideally rational agents, 

it should be readily generalisable—that is, it should be reasonably clear how to extend 

(or ‘de-idealise’) the account so as to apply also to ordinary agents.  
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What is unclear is whether this ‘de-idealisability’ condition will be met if all we have 

is a theorem which merely satisfies (1′) and (2′). Moreover, showing that it can be met 

will essentially involve showing that there is a theorem in the vicinity which satisfies (1) 

and (2). Characterisational representationism won’t be fully vindicated unless progress 

can be made towards a theorem which satisfies the original desiderata, relevant to the 

ordinary person on the street. A theorem that applies only to angels is not enough. 

In Chapter 6, I will suggest that Jeffrey’s representation theorem may satisfy (1′) and 

(2′), though it does this at the cost of strong uniqueness results. However, the idealisations 

needed are extreme: Jeffrey’s theorem only applies to highly idealised subjects, his rep-

resentation result is only plausible for the ideally rational agent, and it is not clear whether 

and how his conditions can be weakened to account for the ordinary subject. In Chapter 

8, however, I will suggest an improvement—a theorem which is many respects similar to 

Jeffrey’s but comes much closer to satisfying (1) and (2) (as well as (3) and (4)), and 

which has the Standard Uniqueness Condition. 

 



 

 

 

 

CHAPTER FOUR 

Interpretivism and Functional Role Semantics 

In this chapter, I will argue that with the right kind of representation theorem—one which 

satisfies the desiderata of §3.4.5—there are at least two ways of developing characterisa-

tional representationism which avoid the central worries that arise for Naïve, Extreme, 

and Classical Characterisational Representationism. Each of these ways is closely analo-

gous to an important contemporary account developed for beliefs and desires; to the ex-

tent that the latter are taken seriously by philosophers as viable options worthy of devel-

opment, so too should their counterparts with respect to credences and utilities. My 

purpose, in other words, is to establish a clear case for pursuing characterisational repre-

sentationism, and for developing representation theorems with characterisational pur-

poses in mind. 

A large part of this chapter will be spent on outlining a variety of positions regarding 

the nature of propositional attitudes and the manner in which they come to have inten-

tional content. Along the way, I will mark out those areas where representation theorems 

are likely to prove particularly helpful. I am inclined to favour those positions and will 

offer some brief arguments against the alternatives, but a criticism of other views is not 

my focus here. The goal of this discussion is neither completeness nor depth; rather, it is 

to mark out some of the major positions that a theorist might adopt when it comes to 

characterising credences and utilities, by way of analogy to some of the major positions 

which exist in relation to beliefs and desires. 

The motivation for this stems ultimately from the fact that the philosophical options 

for characterising credences and utilities—whether with or without the use of representa-

tion theorems—have been left largely unexplored. As a result, there has never been a 

close investigation into how representation theorems might be applied towards develop-

ing an account of the graded attitudes. With the exception of Maher (1993), those friendly 

to characterisational representationism rarely offer more than a few vague conjectures 

about how they expect their favoured representation theorem might be of help (usually 

something along the lines of CCR). Critics of characterisational representationism have 

done more work in spelling out the options than its proponents have (see especially 

Meacham and Weisberg 2011, 644-54). 
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This state of affairs is unfortunate. Perhaps because the relevant terrain of options re-

mains mostly unexplored, characterisational representationism is often quickly dis-

missed, being labelled a form of behaviourism or anti-realism—i.e., the kind of views 

wherein credences and utilities are nothing more than theoretical constructs designed to 

systematically represent an agent’s behaviour. And understandably so: where ≽ is under-

stood as a kind of behavioural preference, CCR and any view which implies it does 

strongly suggest a behaviourist and/or anti-realist viewpoint (§3.3.1). Such positions are 

then placed in contrast with a more wholesome, non-behaviourist and fully Realist (with 

a capital ‘R’) perspective, whereby credences and utilities are understood to be genuine, 

psychologically real states of the agent (in a sense to be specified shortly) with rather 

more malleable and contingent causal links to choice behaviour (e.g., Weirich 2004, 8, 

19-20). Not much more is said about these alternative positions—just that, however it 

may ultimately be fleshed out, what results will not be characterisational representation-

ism (or worse: a betting interpretation). 

There is, in other words, in effect only two very roughly outlined positions which are 

widely discussed by philosophers with respect to the metaphysics of credences and utili-

ties—and consequently, there is some tendency to reject characterisational representa-

tionism out of hand, as belonging to an outdated (behaviourist) or prima facie implausible 

(anti-realist) point of view. As we will see, though, there is nothing inherently anti-realist 

or behaviouristic about the application of representation theorems to the characterisation 

of credences and utilities.  

4.1 Minimal realism and psychological reality 

As noted in §2.1, I will assume a minimal realism regarding credences and utilities. By 

‘minimal realism’, I mean that ordinary agents in ordinary circumstances have, as an ob-

jective matter of fact, credences and utilities; and furthermore, our talk of credences and 

utilities is not a mere façon de parler for talk about outright beliefs and desires. I will 

therefore set aside any kind of eliminativism about the graded attitudes: these states exist, 

and whatever it may turn out to be for S to have a credence of x in P (or a utility of y in 

Q), it will amount to something other than just being in some outright belief (or desire) 

state. Minimal realism may well turn out to be false, but I will not address that possibility 

here. 

A more pertinent distinction for our purposes concerns the psychological reality of 

credences and utilities. Call a state psychologically real just in case it can be uniquely 

identified with some natural kind found at a lower level (e.g., computational, neurobio-

logical, etc.) psychological description of the mind. So, for instance, the state of being in 

pain is psychologically real if it can be uniquely identified with some interesting neuro-

biological state (e.g., c-fibres firing) or basic processes-level state (e.g., a unique compu-

tational role) shared by all and only those in pain, where the neurobiological or process-
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level kind in question can be specified independently of the ordinary causal properties 

typically associated with pain. If there were nothing inside the head which unified all 

typical human subjects who are in pain beyond the fact that they tend to say ‘ouch’ and 

search for painkillers (etc.), then being in pain would only be surface deep: no interesting 

part or process involved in the causal workings of the brain would correspond uniquely 

to pain, so it wouldn’t be psychologically real. 

A common view is that the outright propositional attitude are psychologically real—

or, at least, directly and systematically grounded in something psychologically real. The 

corresponding view for graded propositional attitudes is likely to be roughly as pervasive. 

Let us refer to this as psychological realism about credences and utilities.34 Psychological 

realism can be contrasted with two distinct positions, which are not to be confused: psy-

chological non-realism and psychological anti-realism. The latter (anti-realism) is the 

view that credences and utilities are neither psychologically real nor directly and system-

atically grounded in some psychologically underlying state. By contrast, non-realists po-

sitions are designed to be neutral regarding the issue of psychological reality.  

Because psychological non-realism is historically more closely associated with char-

acterisational representationism, we will begin our discussion with them; then, in §§4.3–

5, we will consider the possibility of developing a realist characterisational representa-

tionism. 

4.2 Two kinds of non-realism 

There is a long-standing non-realist approach of beliefs and desires which shares an ob-

vious resemblance to the kinds of characterisational representationist positions discussed 

in §3.2. It is generally linked to the following passage in (Ramsey 1927): 

 

It is, for instance, possible to say that a chicken believes a certain sort of caterpillar to be 

poisonous, and mean by that merely that it abstains from eating such caterpillars on account 

of unpleasant experiences connected with them. The mental factors in such a belief would 

be parts of the chicken’s behaviour … it might well be held that in regard to this kind of 

belief the pragmatist view was correct, i.e. that the relation between the chicken’s behav-

iour and [the state of affairs which form the content of the belief] was that the actions were 

such as to be useful if, and only if, the caterpillars were actually poisonous. Thus any set 

of actions for whose utility P is a necessary and sufficient condition might be called a belief 

that P… (144) 

 

Let’s use pragmatism for the kind of view being expressed here. Besides Ramsey, prag-

matists include Braithwaite (1946), Marcus (1990), and on some readings, Dennett (1971, 

 
34 For ease of reading, I will usually neglect to specify whether I am talking about psychological realism 

about beliefs and desires or about credences and utilities. This should be clear from context. 
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1989, 1991) comes at least very close to pragmatism. Pragmatism is also discussed (but 

not endorsed) in (Stalnaker 1984, 1-17) and (Joyce 1999, 19-22). The basic idea behind 

pragmatism is that to believe that P and to desire that Q is (ceterus paribus) to behave, or 

be disposed to behave, in such a way as would tend to make it the case that Q were it the 

case that P (and all your other beliefs) were true. It will be helpful to refer to this as the 

Belief-Desire Law: 

 

Belief-Desire Law 

If S believes that P and desires that Q, then (ceterus paribus) S will (be disposed to) behave 

in such a manner as would tend to bring it about that Q if P (and all of S’s other beliefs) 

were true 

 

On the pragmatist’s approach, the Belief-Desire Law is not a mere empirical hypothesis 

specifying some contingent regularity which may or may not turn out to be true. Instead, 

the law plays a constitutive or definitional role: to be an agent—to have beliefs and desires 

at all—is to (be disposed to) behave in such a manner as would make sense under a given 

assignment of beliefs and desires under the assumption of the Belief-Desire Law.  

One of the central recurrent complaints about pragmatism is that our behaviour usually 

seems compatible with multiple, inconsistent interpretations: 

 

What makes an assignment of a system of belief and desire to a subject correct cannot just 

be that his behaviour and behavioural dispositions fit it by serving the assigned desires 

according to the assigned beliefs. The problem is that fit is too easy … Start with a reason-

able [system of beliefs and desires], the one that is in fact correct; twist the system of belief 

so that the subject’s alleged [beliefs] is some gruesome gerrymander; twist the system of 

desire in a countervailing way; and the subject’s behaviour will fit with perverse and incor-

rect assignment exactly as well as it fits the reasonable and correct one. (Lewis 1986, 38, 

see also Stalnaker 1984, 17-18). 

 

There are, of course, some who are willing to bite the bullet of radically underdetermined 

beliefs and desires, but it’s a big bullet to bite. The more common response is to supple-

ment the view with some further principle, which can be used to narrow down the range 

of available interpretations. We will return to this idea shortly. 

Pragmatism—here a view about outright beliefs and desires—is in spirit very close to 

the kinds of position discussed in §3.2. Indeed, many will want to treat the principle of 

expected utility maximisation as an explication of the folk Belief-Desire Law (just as 

numerically represented credences and utilities can be taken to explicate the folk notions 

of belief and desire), and likewise take a representation theorem to underwrite a more 

precise version of classical pragmatist ideas—one which may even demonstrably avoid 

the underdeterminiation problems, if the theorem’s uniqueness conditions are strong 
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enough. After all, the Belief-Desire Law essentially tells us that people generally behave 

in a manner appropriate to bringing about what they desire given the way they think the 

world is, and in outline this is what the principle of expected utility maximisation says, 

albeit in a slightly more refined manner.  

Consider, for example, the principle that David Lewis refers to as Rationalisation, 

which forms a central part of his (1974) approach to naturalising intentionality: 

 

Rationalisation 

[A subject] should be represented as a rational agent; the belief and desires ascribed to him 

… should be such as to provide good reasons for his behaviour, as given in physical terms 

[…] I would hope to spell this out in decision-theoretic terms, as follows. Take a suitable 

set of mutually exclusive and jointly exhaustive propositions about [the subject’s] behav-

iour at any given time; of these alternatives, the one that comes true according [the physical 

facts] should be the one (or: one of the ones) with maximum expected utility according to 

the total system of beliefs and desires ascribed to [the subject] at that time… (1974, 337, 

emphasis added) 

 

The basis for Rationalisation, according to Lewis, is folk psychology: 

 

Decision theory (at least, if we omit the frills) is not esoteric science … Rather, it is a 

systematic exposition of the consequences of certain well-chosen platitudes about belief, 

desire, preference, and choice. It is the very core of our common-sense theory of persons, 

dissected out and elegantly systematized. (1974, 337-8) 

 

It is worth mentioning that a commitment to interpreting agents as expected utility maxi-

misers does not imply a commitment to interpreting agents as having probabilistically 

coherent degrees of belief. While something like expected utility maximisation may be 

involved in the folk theory of the mind and intentional behaviour, it’s not so clear that the 

folk conceptualise ordinary agents as being probabilistically coherent—this is a further 

commitment of CEU. 

It would, of course, be entirely natural to cash out Rationalisation using an expected 

utility representation theorem suited in particular to a behavioural construal of ≽, and it’s 

plausible that Lewis had some such theorem in mind when he wrote the above passages. 

After all, many well-known representation theorems (such as Savage’s) purport to take 

us from an agent’s behavioural preferences to a unique model of that agent as an expected 

utility maximiser, which is exactly the kind of thing that an interpretive principle like 

Rationalisation seems to require.  
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However, the full account that Lewis lays out in his (1974) does not rely solely on the 

principle of Rationalisation—and as a result of this, while it fits naturally with character-

isational representationism, it does not imply CCR.35 Instead, according to what we will 

call Lewisian interpretivism (as opposed to pragmatism), the correct interpretation of an 

agent is the one (or ones) which maximise fit both with the principle of Rationalisation 

and also a second interpretive principle, Charity.36 Charity principles assert that any as-

signment of doxastic states to an agent ought to maximise some epistemic good(s), such 

as knowledge, justification, truth, or accuracy. As Lewis understood it, a subject ought to 

be represented as “believing what he ought to believe” according to what he described as 

a “common inductive method M”: 

 

There must exist some common inductive method M which would lead to approximately 

our present systems of belief if given our life histories of evidence, and which would like-

wise lead to approximately the present system of beliefs ascribed to [the subject] if given 

[the subject’s] life history of evidence according to [a purely physical description of that 

history]. (1974, 336) 

 

Lewis never specified how he intended to naturalistically characterise a “life history of 

evidence” in a plausible way, though he seems to have taken it as obvious that it could be 

described in wholly non-intentional terms (cf. Pautz 2013, 220-6). Perhaps he had in mind 

a complete physical description of the sequence of outside influences upon the agent’s 

sensory organs, along with a physical description of the workings of those organs. 

In any case, to appeal to Charity in one’s account of the attitudes is to include infor-

mation about the agent which goes beyond her (actual or counterfactual) patterns of be-

havioural preferences. Moreover, Charity and Rationalisation principles can pull in quite 

different directions. Suppose that S satisfies a theorem T’s preference conditions so as to 

be uniquely representable as an expected utility maximiser with credences ℬel. However, 

suppose also that ℬel is radically at odds with what we would expect S to believe given 

her life history of evidence. For instance, ℬel may assign a very high degree of belief to 

P, despite the vast majority of S’s evidence pointing towards ¬P. In this situation, Charity 

 
35 Some of Lewis’ views regarding mental content are also detailed in his (1975), (1983, 373ff), and 

(1986, 27-50), and seem to have changed only slightly over the years—most of the changes being due to a 

growing emphasis on the importance of ‘naturalness’ considerations. See (Weatherson 2012b), (Pautz 2013, 

220-6), and (Schwarz 2014a) for helpful, and generally very sympathetic, exegeses of Lewis’ interpretivism 

as expressed in his (1974). 

36 See Davidson (1973, 1990) and Stalnaker (1984, Ch. 1) for positions which share much in common 

with Lewis’s view as described here. Dennett, especially in his (1989, 17-21), also shows strong concern 

for something like a principle of Charity to interpretation. Lewis’ own understanding of Charity also in-

cluded principles for the reasonable assignment of desires to a subject; e.g., that one should not be inter-

preted as having an intrinsic desire for a saucer of mud. 
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should presumably pull us away from the assigning ℬel as the agent’s credence function.37 

Given that the correct interpretation is constrained by both Charity and Rationalisation, 

and so long as Rationalisation is not given any strong interpretive priority over Charity, 

it would be unreasonable for the Lewisian interpretivist to assign ℬel in her final inter-

pretation of S. Given an appeal to Rationalisation—which is naturally precisified by 

means of a representation theorem—Lewisian interpretivism suggests characterisational 

representationism, but not CCR. 

For both pragmatists and interpretivists alike, propositional attitudes might best be 

thought of as states of a person rather than states of (or in) the head: the workings of the 

brain are irrelevant on both kinds of views, what matters is just one’s behavioural states 

and (for the Lewisian interpretivist) one’s history of evidence. Propositional attitude at-

tributions are not hypotheses about the inner workings of the brain; they are instead usu-

ally conceptualised as parts of an innate theoretical system (folk psychology) developed 

over time for the explanation and prediction of behavioural patterns, but where that folk 

theory involves no strong commitment to psychological realism.  

A classic intuition pump in favour of this line of thought goes as follows. Imagine that 

we are visited by a race of alien beings, whose internal physical constitution is entirely 

unknown to us, but who are able to speak our languages, engage in intelligent and mean-

ingful conversations and apparently express very sensible thoughts, react as we would to 

various stimuli, and generally behave just as any ordinary human would across a huge 

range of contexts. It seems entirely natural to describe such beings as having beliefs and 

desires (or credences and utilities), and to explain their apparently intentional actions by 

reference to those beliefs and desires—even in complete ignorance of whatever may be 

going on inside their heads. Indeed, we may even suppose that there is nothing inside 

their heads which correspond to an ordinary human brain. Almost certainly, the aliens 

will have to in some way or another represent how they take the world to be and other 

ways it might be, but this need not be through any psychological structures akin to human 

representations. To the extent that we are still willing to assign beliefs and desires to these 

aliens, the implication seems to be that what ultimately matters for propositional attitude 

attribution is grounded at least in part in patterns of actual and counterfactual behaviour, 

independent of any questions concerning the psychological reality of those attitudes. 

As we have noted, though, the view that the propositional attitudes must be psycho-

logically real (or directly grounded in some psychologically real state) is very common 

amongst contemporary philosophers, who are ipso facto liable to reject any non-realist 

account of credences and utilities. In the next few sections, we will consider whether 

 
37 In saying this, I am of course disagreeing with Maher (see §3.2). Maher appeals to a CEU theorem 

and asserts that because ℬel is probabilistically coherent, it is therefore part of a perfect interpretation of S. 

But, probability function or not, ℬel is unlikely to accurately represent S’s credences if it doesn’t take into 

account her reasonable response to evidence. 
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representation theorems might be fruitfully applied to the development of a psychologi-

cally realist position instead. But, before we move on, it’s worth noting that the two ver-

sions of non-realism outlined in this section are entirely consistent with the kind of func-

tional role semantics that I will suggest in §§4.4–5. Indeed, should psychological realism 

turn out true, then both pragmatism and Lewisian interpretivism very naturally suggest a 

functional role semantics for the underlying psychologically real states, cashed out at least 

in part by means of a representation theorem. 

4.3 Psychological realism and the structure of thought 

A popular idea amongst psychological realists (or just realists, for short) is that the mind 

works in a manner closely analogous to a digital computer, and that the outright proposi-

tional attitudes are (or are very closely connected to) physical data structures stored 

somewhere in the brain—much like files stored on a computer’s hard drive, ready to be 

used should the need arise. These structures are usually referred to in the jargon as ‘mental 

representations’, though understood as such ‘mental representation’ is a technical term 

used by theorists working within the so-called computational theory of mind (see Fodor 

1975, Putnam 1980). In what follows, I want to generalise away from specific theories of 

cognition (e.g., computationalism versus connectionism), so to avoid ambiguity we will 

use ‘M-representation’ to refer to any psychologically real state with semantic proper-

ties—whether these semantic properties are truth values, truth-conditions, success condi-

tions, reference, or otherwise. 

As a first pass characterisation only, many realists would be happy to assert that for a 

non-graded propositional attitude ϕ, S ϕs that P just in case S has somewhere in her head 

an M-representation #P# that (a) plays a ϕ-like role in cognition, and (b) means that P. 

What exactly constitutes a ϕ-like role is never specified precisely—instead we usually 

find a promissory note that such details will be fleshed out eventually (in fully naturalistic 

terms no less). Presumably, a belief-like role, for example, would involve certain patterns 

of responses to perceptual states, being a guide in action when taken in combination with 

one’s desires (as per the Belief-Desire Law), and so on. I will discuss this further below. 

It is widely held that this first pass characterisation is too strong. Consider, for exam-

ple, the case of belief. Most realists will hold that we have many implicitly held beliefs—

such as the belief that 1000 is less than 1001, that 1001 is less than 1002, and so on—

without holding that we have for every such belief some M-representation with the con-

tent of that belief (and only that content) stored somewhere in the head. To think otherwise 

would be to countenance a massive (if not infinite) proliferation of stored informational 

structures, which would be psychologically implausible. 

The most common response to such considerations is to weaken the earlier character-

isation, giving us what I will call Basic Psychological Realism (or BPR): 
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Basic Psychological Realism (BPR) 

S ϕs that P iff S has in her head an M-representation #P# that (a) plays a ϕ-like functional 

role, and either (b) means that P or (c) has some other content from which P can be ‘readily 

extracted’ 

 

As will become clear, what the “other content” may be, and what “readily extracted” 

means, will depend on the specifics of the view to be developed. In the event that (a) and 

(b) hold, we can say that S explicitly ϕs that P, whereas S implicitly ϕs that P when only 

(a) and (c) hold. In another manner of speaking, explicit attitudes are psychologically real 

states, whereas implicit attitudes are directly grounded in psychologically real states. 

(Thus, the psychological realist about beliefs will hold that all of our beliefs—whether 

explicit or implicit—either are, or are directly and systematically grounded in, psycho-

logically real states.) 

If BPR is true, then there are a number of options regarding what to say about the exact 

character of the M-representations that underlie our propositional attitudes, and the ori-

gins of their content. According to BPR, if S ϕs that P then there must be some M-repre-

sentation (call it #P#) which either means that P or is otherwise closely connected to P 

by virtue of whatever content it does have. In what follows, I will first characterise two 

prominent philosophical positions on the structure of these underlying M-representations, 

before turning to a discussion of how they might get their content in §4.4. These two 

positions were developed with outright beliefs and desires in mind; as we proceed, I will 

also discuss how they might also be augmented to apply to the graded attitudes. 

Perhaps the most common—or at least the most commonly discussed—view on the 

character of #P# originates with Fodor (1975, 1987), who held that: 

 

(i)  We have many distinct explicit beliefs and desires 

(ii)  The M-representations #P# underlying each explicit attitude state have propositional con-

tent 

(iii)  #P# has an internal structure that’s closely analogous to the sentences in spoken languages 

used to express those contents 

 

Each of these is a non-trivial, empirical claim, and the conjunction of all three we can 

refer to as the sentential view. The third claim is particularly important; the idea is that, 

just as sentences expressing propositions are constructed out of words with sub-proposi-

tional contents, so too might we think that the M-representations directly underlying our 

beliefs can be broken down into more basic M-representations—called concepts—with 

stable sub-propositional contents, which have to be composed in the right way to arrive 

at the right proposition. So, for example, on the sentential view the M-representation 

which means that John is taller than Frank might be composed out of the concepts 

#taller#, #John#, and #Frank#, and have the structure <#taller#: <#John#, #Frank#≫, 
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where reversing the order of #John#, and #Frank# would alter the proposition thereby 

expressed. 

A central motivation for the sentential view is its capacity to explain the systematicity 

and productivity of thought. Thought is systematic in the sense that the ability to entertain 

some contents seems to come hand-in-hand with the ability to entertain others. The ability 

to believe that (or desire that, etc.) John is taller than Frank seems to imply also the 

ability to believe that (or desire that, etc.) Frank is taller than John. Thought is also pro-

ductive in the sense that we seem to have the ability to entertain an unlimited number of 

contents; the beliefs I actually have, for example, are just a fraction of the beliefs that I 

could have had. Sentential views explain these two features of thought by positing a range 

of stored concepts with fixed contents which can be freely recombined in an unlimited 

number of ways according to simple rules to produce an unlimited number of sentence-

like M-representations with distinct propositional contents. 

Advocates of sentential views like to speak of ‘belief boxes’ and ‘desire boxes’ as 

metaphors for the set of stored M-representations which play belief-like and desire-like 

roles respectively. When tasked to say whether she believes that P, a subject is conceived 

of as searching through the sentences contained in her belief box to find one which either 

reads P or ¬P, or in lieu of that, some other sentence from which either P or ¬P readily 

follows. Importantly, on this picture, an ordinary subject is generally seen to have a great 

many explicit beliefs and desires: there are many sentences stored in her belief and desire 

boxes, and those sentences are about reasonably non-specific matters—about as specific 

as an ordinary assertion in a natural language (e.g., ‘Roses are red’ or ‘Australia has 6 

states’). 

Sentential views appear to be the most prominent view amongst philosophers who 

presuppose the psychological realism of the outright propositional attitudes. Unfortu-

nately, they are usually discussed in the context of debates surrounding outright beliefs 

and desires, and the extent to which they might be applied to credences and utilities does 

not seem to have been anywhere thoroughly explored—although I suspect that many of 

the philosophers who incline towards a sentential view for beliefs and desires would hold 

a similar view for credences and utilities (to the extent that they take the latter to be psy-

chologically real).38 

 
38 In a recent paper, Goodman et al. (2015) outline what they call the ‘probabilistic language of thought 

hypothesis’, that “concepts have a language-like compositionality and encode probabilistic knowledge” 

(626). Their account is similar to Fodor’s in that the M-representations underlying our credences are as-

sumed to be structures in a computational system built out of recombinable parts with stable contents in a 

broadly language-like fashion (claim (iii), above). However, instead of positing sentence-like M-represen-

tations with propositional contents (one for each explicit credence state), Goodman et al.’s ‘sentences’ 

jointly encode probability distributions over a space of possible world states. In this respect, their position 

shares more in common with the map-like views discussed below. 
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Let us consider how one might incorporate credences into a sentential account. There 

are two obvious options here; the first option is to suppose that every relevant sentence-

like M-representation comes with some attached psychological property that corresponds 

to a degree of confidence x, which determines for it a unique cognitive role (i.e., a ‘cre-

dence-of-x-like’ role). If so, it’s easy enough to extend BPR to account for explicit cre-

dence states:  

 

S has an explicit credence of x in P iff S has an M-representation #P# that (a) plays a cre-

dence-of-x-like role, and (b) means that P 

 

Instead of a ‘belief box’, a better metaphor here would be a ‘credence warehouse’: picture 

a large warehouse containing a number of equal-sized barrels, each labelled with a unique 

sentence and each containing some amount of ‘confidence fluid’. One then has an explicit 

credence of n/100 in P if, somewhere in this warehouse, there is a barrel labelled with a 

sentence that means that P that is n% filled with confidence fluid. 

This account already implies a large proliferation of stored M-representations—far 

more so than were needed to account for our explicit beliefs, for now we need to account 

for a range of explicit credences towards a huge range of possible degrees of confidence. 

Moreover, it’s not obvious how we might make sense of implicit credence states under 

this kind of view. When it comes to outright beliefs, it’s somewhat plausible that if S 

explicitly believes that P and S can derive Q from P with very little effort, then S also 

believes that Q (albeit only implicitly). However, the strategy of appealing to “easy deri-

vations” does not seem to apply where it is credences rather than beliefs that are the focus 

of the account. Relations between credence states function differently than relations be-

tween outright beliefs—credences operate under a different logic. If S has an explicit cre-

dence of x in P, and Q can be readily derived from P, what should be said about S’s 

credence towards Q? Perhaps S does have some implicit degree of confidence towards Q 

in this case—but what degree? Probabilists will assert that S’s credence in Q should be 

no less than x, but this is quite uninformative even under the (implausible) assumption 

that S is probabilistically coherent. Indeed violations of monotonicity are empirically 

well-established, even in cases where the relevant Q is easily derivable from P (see the 

conjunction fallacy discussed in Tversky and Kahneman 1974). 

There is another option for sentential views, which is to appeal to a position that we 

might call ordinalism. According to ordinalism, absolute credence states reduce to rela-

tive credence states (see §2.1 for the absolute/relative distinction). On this picture, the 

degrees of confidence assigned to individual propositions are a measure of their position 

within an overall ordering of claims according to their relative plausibility. A sententialist 

picture fits nicely with ordinalism, supposing at least that the ordering can be appropri-

ately functionally characterised. In particular, the idea would be that the psychological 

reality of our credence states (both absolute and relative) is to be explained by positing a 
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large collection of sentences arranged (in an appropriate functional sense) according to 

their relative perceived likelihoods. Then, to find P more plausible than Q would be to 

have a sentence which means that P situated higher in the ordering than a sentence that 

means that Q. On the other hand, to have a credence of x in P would be to have a sentence 

which means that P whose location relative to other sentences in the ordering is repre-

sented by the degree x. Sentences at the bottom of the ordering are conventionally as-

signed a value of 0, those at the top are assigned a value of 1, and everything else gets 

assigned a value in between. 

This position will again face the issue of avoiding an excessive proliferation of stored 

M-representations—it certainly seems implausible that for every proposition P towards 

which we have some credence there must be a sentence #P# sitting somewhere in the 

ordering, so we would need an appropriate way of understanding implicit credence states. 

But there is another challenge here. It is generally assumed that credences are not merely 

measured on an ordinal scale, that a credence function should be understood at least as 

an interval scale, if not a ratio scale. Intervals matter: if S believes P to degree 0.1, Q to 

degree 0.2, and R to degree 0.4, then the difference in her degree of belief between P and 

Q is less than the difference between Q and R. Indeed, it even seems that ratios matter: 

it’s natural to say that I am twice as confident that a fair coin will land heads if it’s flipped 

once (credence 0.5) than I am that it will land heads twice in a row (credence 0.25). In 

order to show that an ordering ≽x of some collection of entities—in this case, a collection 

of sentence-like M-representations—can be measured on either an interval or a ratio scale, 

we need to show that ≽x satisfies a number of further structural constraints. (In particular, 

we need to at least be able to say when the difference in degree between #P# and #Q# is 

equal to the difference in degree between #R# and #S#, and show that this quaternary 

relation satisfies certain structural conditions—see Definition 8.6.) The challenge, then, 

is to establish an empirically plausible set of constraints on a functionally-characterised 

ordering of M-representations which will allow for an appropriate measure of credence—

i.e., a measure which goes beyond merely ordinal information, which lets us represent the 

relative strengths with which propositions are believed.39 

Sentential views are not universally accepted. Scepticism regarding the approach is 

famously associated with Dennett (1971, 1989, 1991) and Stalnaker (see esp. his 1976, 

1984, 1999b). An important alternative to understanding the character of #P# is to treat it 

as having a structure and content analogous to that of a street map. (See Lewis 1982, 

1994, Braddon-Mitchell and Jackson 1996, Ch. 10.) Call this a map-like view. A map is 

 
39 It would, I think, be a mistake to appeal to a representation theorem for a system of qualitative prob-

ability (mentioned in §2.4) in spelling out this position, as opposed to one of the more traditional theorems 

for extensive measurement (see Krantz, Luce et al. 1971). Theorems like de Finetti’s (1931), which allows 

us to T-represent a weak ordering ≽b over an algebra of propositions 𝒫 using a probability function, rely 

heavily on set-theoretic relations between the propositions in 𝒫—relations which we shouldn’t assume hold 

between the sentences used to express those propositions. 



 

69 

 

not a collection of sentences, nor does it hold information in the same way that a collection 

of sentences does (Camp 2007). An ordinary street map, for example, is a single infor-

mationally-rich representational object which, due to the arrangement of its parts, man-

ages to hold information about the relative position, orientation, number, dimensions and 

names of a large number of distinct entities (buildings, streets, hills, etc.).  

The hypothesis that M-representations might be more akin to maps than sentences is 

intended to help explain the productivity and systematicity of thought (and thus serve as 

a counterexample to the claim, sometimes made, that these two properties can only be 

explained given a sentential view). Maps are, for one thing, systematic: the way a map 

represents one aspect of the world is closely integrated with how it represents a great 

many other things. For instance, one cannot change the absolute location of a hospital on 

a map without also changing its position relative to everything else, changing the shortest 

path to the hospital from a given location, and so on. Likewise, if M-representations are 

map-like, then thought is also plausibly productive: an alteration in the arrangement of 

the parts of a map, or the addition of a new part, produces a new representation of the 

way the world is. By analogy, a map-like M-representation is supposed to be a single, 

highly integrated and informationally rich representational unit which captures infor-

mation about a great many things at once, where a small change in its structure might 

mean a great many changes in the specific informational content that it holds. 

In contrast to the sentential view, proponents of map-like views seem to prefer the idea 

that there might be relatively few M-representations underlying our beliefs and desires—

perhaps even only one for each kind of attitude. As Lewis puts it, 

 

If mental representation is map-like … then ‘beliefs’ is a bogus plural. You have believes 

the way you have the blues, or the mumps, or the shivers. But if mental representation is 

[sentence]-like, one belief is one sentence written in the belief box, so ‘beliefs’ is a genuine 

plural. (1994, 311) 

 

Our individual beliefs, such as the belief that roses are red or that Tuesdays follow Mon-

days, are conceived of as different fragments of information extracted from a single, com-

plex and highly-structured M-representation, which encodes our overall picture of how 

the world is. This is consistent with BPR, though it implies that what we would usually 

call our ‘beliefs’ are, in general, implicit beliefs—to the extent that there are any psycho-

logically real doxastic states, they corresponds to whole systems of belief, rather than to 

individual beliefs. 

Lewis also argues for another difference between map-like and sentence-like M-rep-

resentations: “Mental representation is [sentence]-like to the extent that parts of the con-

tent are the content of parts of the [M-]representation”, whereas “If our beliefs are [like 

maps], then they are to that extent not language-like” (1994, 310-11). As Blumson (2012) 
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points out, though, parts of a map often represent parts of what the map as a whole repre-

sents—the bottom half of a map of the Earth usually represents the geography of the 

southern hemisphere, for instance. I suspect, however, that Lewis was casting doubt on 

the idea that our beliefs are nothing more than structures composed wholly out of a finite 

base of discrete and freely recombinable elements (i.e., concepts) with fixed contents—

that is a commitment of the sentential view, and while it’s consistent with the map anal-

ogy, it should not be taken for granted. Mental representation need not be digital, and the 

parts of an M-representation (to whatever extent they can be isolated) need not have sig-

nificance independent of their role within a broader context (cf. Camp 2015). 

Map-like views are relatively underdeveloped, and there does not seem to have been 

much of an attempt within philosophy to extend map-like views to deal with credences 

and utilities—though recent work on causal Bayes nets in psychology could be of much 

use here. See, especially, (Pearl 1988, 1990) and (Gopnik, Glymour et al. 2004). The 

discussions in (Lewis 1982, 1994) and (Braddon-Mitchell and Jackson 1996) focus on 

how a map-like view might work as an account of our beliefs: according to these authors, 

map-like M-representations are taken to capture an entire belief system by virtue of rep-

resenting a single, highly specific way the agent believes the world to be. The map essen-

tially picks out a set of doxastically possible worlds—a highly specific proposition—and 

the agent is said to believe any proposition P which is true at every such world. 

However, if a single M-representation is to underlie all of our credences, then it clearly 

must take a quite different structure than that of a map which merely represents just one 

way that things might be. In particular, it needs to be able to represent a very wide range 

of ways things might be, along with their respective likelihoods. Instead of an ordinary 

street map, then, which represents one way things might be, perhaps what would be 

needed is a more complicated ‘map’ of some space of possibilities, with different areas 

of the map being marked as more or less likely. The content of the M-representation, in 

other words, might have more in common with a probability density distribution over a 

space of possibilities than it does with a street map that represents a single way the world 

might be (see Figure 4.1). This, at any rate, seems to be how Lewis (1986, 30) imagines 

an extension of a map-like view to account for credences.  
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Figure 4.1 

 

To flesh out this idea more, let 𝒲 be a space of possibilities. We will suppose that 𝒲 

is finite, but we need not suppose that the elements of 𝒲 are maximally specific—it’s 

enough that they are mutually exclusive and jointly exhaustive; i.e., the actual world must 

be in exactly one w ∈ 𝒲. A probability density distribution on 𝒲 is a function 𝒟 which 

assigns each w ∈ 𝒲 a real value somewhere between 0 and 1 such that: 

 

∑ 𝒟 
𝑤∈𝓦 (w) = 1 

 

𝒟 effectively assigns a credence value to every element of 𝒲. Furthermore, we can use 

it induce a probability function 𝒫r on an algebra of sets 𝒫 constructed from 𝒲, by simply 

assuming that for each P ∈ 𝒫,  

 

𝒫r(P) = ∑ 𝒟 
𝑤∈𝑃 (w) 

 

Thus, a single M-representation which encodes something like a probability density 

distribution over a space of possibilities can ipso facto also be taken to encode an agent’s 

credences towards any propositions which can be constructed out of that space. There is, 

however, an immediate problem with this way of understanding map-like M-representa-

tions for credences: given that I have characterised 𝒲 as a space of possibilities, 𝒟 can 

only be taken to encode the credences of a fully probabilistically coherent subject.  

The beginnings of a solution to this problem might be found if 𝒲 is allowed to include 

impossible states of affairs, to which 𝒟 might assign values of greater than 0. Under this 

kind of construction, different impossible propositions can be modelled as distinct regions 

within 𝒲 and can be assigned some positive credence. Likewise, distinct necessary prop-

ositions will be distinct regions within 𝒲—they will intersect with respect to the possible 

states of affairs, but will differ at various impossible states of affairs. Because necessary 
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propositions are no longer just equivalent to the universal set 𝒲, they may be assigned 

values of less than 1. 

Finally, and perhaps most interestingly, the probability function 𝒫r induced by 𝒟 need 

not be ‘additive’, in the sense that if P logically implies ¬Q and Q logically implies ¬P, 

then: 

 

𝒫r(P ∨ Q) = 𝒫r(P) + 𝒫r(Q) 

 

That is, suppose that P ⊢ ¬Q and Q ⊢ ¬P; i.e., there are no possibilities in 𝒲 where both 

P and Q hold. However, there may still be impossibilities in 𝒲 where P & Q is true. Let 

w be any such impossibility. If (w) > 0, it immediately follows that: 

 

𝒫r(P ∨ Q) < 𝒫r(P) + 𝒫r(Q) 

 

This shows that the representation of a credence state by means of a probability function 

is consistent with subadditive credences, if the function’s domain is adequately struc-

tured.40 Using similar reasoning, it’s also easy to show that 𝒫r(P) may be greater than 

𝒫r(Q) even when P ⊢ Q. 

With the right kind of impossible states of affairs in 𝒲, 𝒫r may also assign superad-

ditive credences.41 In particular, suppose that there is an impossibility w in 𝒲 where P ∨ 

Q is true but neither P nor Q is true, for a pair of logically incompatible P and Q, and 

suppose that (w) > 0. Then, assuming that no credence is given to any impossibilities 

where P & Q, it will turn out that: 

 

𝒫r(P ∨ Q) > 𝒫r(P) + 𝒫r(Q) 

 

Thus, a map-like M-representation might encode something like a probability density dis-

tribution over a possibility space (broadly construed), and thereby also encode even 

highly incoherent credences over a wide range of propositions more generally. But there 

are also other options here—for instance, Dubois and Prade’s (1988) possibility theory 

allows us to systematically construct a credence function on the basis of what they call a 

possibility distribution; i.e., a function 𝒟′: 𝒲 ↦ [0, 1] such that 𝒟′(w) = 1 for at least one 

 
40 Interestingly, this kind of ‘sub-additivity’ arises precisely because 𝒫r is additive, in the technical 

sense that for all P, Q ∈ 𝒫, if P ∩ Q = ∅, then 𝒫r(P ∪ Q) = 𝒫r(P) + 𝒫r(Q). On this construal of 𝒲, it is no 

longer true that P ⊢ Q implies P ⊆ Q (though the reverse still holds). 

41 Thanks to Daniel Nolan for reminding me that this can also be done. There are problems that arise 

with trying to systematically characterise the relevant impossibilities; see (Bjerring 2013). 
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w ∈ 𝒲.42 Likewise, appeal may be made to the Dempster-Schafer theory of belief func-

tions, wherein each proposition P divides a possibility space into three sections—one 

where P is determinately true, one where P is determinately false, and one where it’s 

unclear whether P or ¬P—which seems especially useful in capturing imprecise credence 

states (see Dempster 1968, Shafer 2011). 

Let us summarise. The key point of the foregoing discussion is that to be a psycholog-

ical realist about credences (and likewise for utilities), one does not have to hold that there 

is any straightforward, one-to-one correspondence between the absolute credence states 

we attribute to ourselves and others, and whatever M-representations might be found in-

side the head. Theorists who adhere to a map-like view about beliefs hold that those be-

liefs really are in the head—i.e., there is something psychologically real which directly 

and systematically grounds the truth of our belief attributions—but they don’t think that 

having many individual beliefs with such-and-such contents requires having many M-

representations with just those contents. Psychological realism, as it is here being under-

stood, is not equivalent to the sentential view. 

4.4 Content determination for realists 

Suppose that S has a credence of x in P. (Alternatively, suppose that S has a utility of y in 

P—the focus on credences rather than utilities here is immaterial to the discussion.) The 

Basic Psychological Realist is then committed to holding that there is some M-represen-

tation #P#—whether sentence-like or map-like or otherwise—which is the psychological 

basis for S’s credence, and that #P# has some content or other. What grounds #P#’s con-

tent, whatever that content may be?  

In what follows, I will look at different strategies for answering this question, and 

argue that representation theorems seem especially useful in fleshing out the details for 

one of these strategies in particular (what will later be referred to as functional role se-

mantics). 

One common strategy we might call compositionalist: #P# is to be broken down into 

smaller, independent M-representations with fixed contents—i.e., concepts—and, follow-

ing an appropriate account of conceptual content, we are to work out #P#’s content using 

some principle of compositionality. According to the compositionalist, intentionality first 

enters the mind through our concepts, not through our propositional attitudes—proposi-

tional content is derivative upon conceptual content. Partly because of the prominence of 

sentential views, the compositionalist strategy has proven especially common over the 

past few decades. If each of our attitudes involves a sentence-like #P# playing a ϕ-like 

 
42 In particular, for any non-empty P in an algebra of sets on 𝒲, define the possibility measure f as 

follows: f(P) = sup{𝒟′(w): w ∈ P}, and f(∅) = 0. This implies that f is a sub-additive credence function: f(P 

∪ Q) = max{f(P), f(Q)}, while f(𝒲) = 1. 
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role in cognition, then a natural way to approach the project of characterising what it is 

to ϕ that P would be to try to break the task into three (presumed to be independent) sub-

tasks, to be approached in the following order: 

 

(i)  Account for the content of the constituents of #P# 

(ii)  Explain how those parts compose to produce #P# and its propositional content 

(iii)  Explain what it is for #P# to play a ϕ-like role  

 

For instance, suppose that S (explicitly) believes that cats are mammals and cats are 

friendly, and (explicitly) desires that she possess a cat. Tokens of the concept #cat# appear 

as constituents in each of these attitudes—as Fodor puts it, “some mental formulas have 

mental formulas as parts; and … those parts are ‘transportable’: the same parts can occur 

in many mental representations” (1987, 137). Implicit in this is that the meaning of #cat# 

is stable across ‘transportations’. It is natural, then, to think that the explanation for why 

#cat# refers to cats should be the same in each of these instances, whatever that explana-

tion might be. If we can find that explanation and apply it to all of our concepts, then most 

of the hard work in explaining the propositional attitudes will be complete—the only re-

maining tasks would be to show how concepts can be used to build sentence-like struc-

tures, and then to differentiate the attitudes by the roles that these structures might play. 

There are two very well-known kinds of views on how we might (naturalistically) ac-

count for conceptual content that fit nicely with the compositionalist strategy. The first 

are causal-informational views, which appeal primarily to co-variation, or indication, re-

lations between concepts and their purported contents. At a first pass, the idea is that #cat# 

means cat just in case #cat# tends to be tokened in the presence of cats—the tokening of 

#cat# indicates the presence of a cat. More complicated versions of the view might appeal 

to special formation periods during which the content is fixed and remains unchanged 

thereafter (Dretske 1981), or asymmetric dependency relations between concept token-

ings and potential contents (Fodor 1987). 

The second kind of view, teleosemantics, can be thought of as a special case of the 

causal-informational approach—one which appeals in particular to covariation relations 

under conditions of proper functionality, where a concept’s proper function is understood 

in biological terms: 

 

F is the (or a) proper function of a characteristic C in an entity E iff the (or a) reason E has 

C is because it Fs 

 

In the biological case, where E is an organism, F is C’s proper function just in case the 

possession of C conferred a fitness advantage to E’s ancestors either wholly or partly 

because it Fs. For example, the proper function of a human eye is to see: the possession 

of eyes conferred a fitness advantage to human ancestors in their normal environments 
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precisely because they allowed them to see; so the fact that eyes enabled sight in those 

environments is the ultimate explanation for why we have eyes today. 

Very roughly, then, a teleosemantic account of conceptual content would be that #cat# 

means cat just in case it would be reliably tokened in the presence of cats (and only in the 

presence of cats), were it to be functioning properly in ancestrally normal environments. 

(For more details, see Millikan 1989, 1990, Neander 2006.) The concept #cat# is, in other 

words, an adaptation which exists today because it was tokened in the presence of cats, 

and by virtue of this (according to the teleosemanticist) it manages to now represent cats. 

(Note that teleosemantic views need not be, and have not always been, tied to sentential 

views nor the compositionalist strategy. I will return to this below.) 

Both of these kinds of views suffer from unresolved problems recognised more or less 

since their inception. It would take us too far afield to discuss these in any depth, so I will 

highlight just a couple. Because both causal-informational and teleosemantic views at-

tempt to explain conceptual content ultimately in terms of causal relationships between 

concepts and the external world, they suffer from so-called disjunction problems: when a 

concept is causally connected to many distinct features of the world—some of which may 

be co-extensive—it can be difficult (if not impossible) to distinguish one causal relation 

as the relation that is important for fixing the content (see Fodor 1984). A related issue 

concerns the content of concepts about non-existent objects and uninstantiated properties: 

such things cannot enter into causal relationships of any kind, and so pose problems for 

theories that rely on such relationships (see Stampe 1977).  

There are alternatives to the compositionalist strategy. For example, consider inferen-

tial role semantics, expressed here by Paul Boghossian: 

 

Let’s suppose that we think in a language of thought and that there are causal facts of the 

following form: the appearance in S’s belief box of a sentence R1 has a tendency to cause 

the appearance therein of a sentence R3 but not R2 … we may describe this sort of fact as 

consisting in S’s disposition to infer from R1 to R2, but not to R3. Let’s call the totality of 

the inferences to which a sentence is capable of contributing, its total inferential role … 

Against this rough and ready background, an inferential role semantics is just the view that 

there is some construct out of an expression’s total inferential role that constitutes its mean-

ing what it does. Let us call this construct an expression’s meaning-constituting inferential 

role … (1993, 73-4) 

 

Setting aside some minor complications, the general idea is that R1 should be assigned a 

content which best rationalises its meaning-constituting inferential role—essentially, it 

involves a principle of Charity applied to specific patterns of inference. So, for example, 

given “S’s disposition to infer from R1 to R2, but not to R3”, it might be appropriate to let 

R1 mean there are cats if R2 means there are animals and R3 means there are cups, but it 

would not be appropriate to interpret R1 as such if R2 meant there are no animals. 
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Although Boghossian casts the view in terms of a language of thought, there is nothing 

in the inferential role semanticist’s view of content determination requires specifically 

sentence-like M-representations—R1 through to R3 could be wholly unstructured sym-

bols, incapable of being decomposed down into concepts, so long as (a) there are suffi-

ciently many of them, and (b) they can figure in causal relationships with one another and 

can thereby be assigned propositional contents.43 Conditions (a) and (b) do suggest that 

inferential role semantics will not play nicely with a map-like M-representations, but map-

like views and sentential views aren’t jointly exhaustive.  

Inferential role semantics resembles the compositionalist strategy in that it attempts to 

divide the problem of characterising what it is to ϕ that P into two (presumed to be inde-

pendent) sub-tasks, to be approached in the following order: 

 

(i)  Account for the content of #P# 

(ii)  Explain what it is for #P# to play a ϕ-like role  

 

To the extent that an account of conceptual content is then needed, the general strategy is 

to consider the overall role that concepts play within the sentence-like M-representations 

of which they form a part, and assign a content on that basis—thus giving us a form of 

conceptual role semantics for conceptual content, where conceptual content is taken to 

be derivative upon propositional attitude content.44 For instance, we might notice that the 

concept #cat# can be found in all and only the sentences which express something about 

cats, and thereby assign it that content to capture the role it plays in inference (see esp. 

Block 1986).  

Inferential role semantics suffers from general problems relating to the precise speci-

fication of the meaning-constituting inferential role. It also has to deal with permutation 

problems, which suggest that any specification of a meaning-constituting inferential role 

might be insufficient for the purposes of pinning down determinate contents (see Lewis 

1984, Williams 2007, 2008)—and to whatever extent contents can be pinned down, they 

 
43 Boghossian’s motivation for adopting the language of thought hypothesis is grounded Fodorian con-

siderations regarding the productivity and systematicity of thought, rather than considerations about content 

determination. 

44 Conceptual role semantics (CRS) comprises a very broad and heterogeneous collection of views, 

which centre on the idea that the content of a concept is determined primarily by the functional role that the 

concept plays in thought. As it is described here, CRS is not an instance of the compositionalist strategy 

because the content of a concept cannot be determined prior to fixing the contents of the larger representa-

tional structures of which it is or may be a part—CRS treats the compositionalist’s sub-tasks (i) and (ii) as 

highly interdependent. Some versions of CRS may also take into account not only the role that concepts 

play in licensing inferences between beliefs, but also their connections to perceptual states, categorisation 

behaviour, and so on, so conceptual content need not be wholly determined by propositional attitude con-

tent. 
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may end up being the wrong contents (see Williamson 2009). These are well-known prob-

lems for an inference-based semantics, but I want to suggest two more issues which seem 

to me equally serious. 

The key idea behind inferential role semantics is that the (propositional) content of the 

relevant M-representations (R1 to R3) is supposedly fixed by the causal role that they play, 

or would play, if they were deployed in a specifically belief-like manner: R1 to R3 are 

symbols which can play many different roles in cognition—giving rise to different kinds 

of propositional attitude—but it’s only the role that they would play were they in a ‘belief 

box’ that matters in relation to their content. Where #P# underlies a desire that P, for 

example, this is because of what #P# would do were it to play a belief-like role—it just 

so happens that #P# underlies a desire, though what it does in that capacity plays no part 

in grounding its content.  

There is, therefore, an important background assumption made by inferential role se-

manticists: that the M-representations like #P# which might underlie any given attitude 

state can always be involved in the relevant kind of inferential relationships—that while 

#P# might actually be the psychological basis for a desire (or a utility, or a credence), it 

could be employed in a specifically belief-like manner. (A similar assumption is of course 

made by advocates of the compositionalist strategy.) That this should be the case is by no 

means obvious, and neither is the assumption necessary to account for the systematicity 

and productivity of thought. In particular, a psychological realist could well hold that 

one’s credences regarding P and one’s utilities towards P could be underwritten by two 

distinct and dedicated types of M-representation, #P# and *P*, such that it does not even 

make sense to speak of *P* playing a credence-like (or belief-like, etc.) role. 

Moreover, the focus on belief-like inferential relations seems odd, if not simply unmo-

tivated. Consider, for instance, the following (admittedly fanciful) scenario. We note that 

whenever S has in her ‘belief box’ a sentence-like #P#, she is disposed to make certain 

inferences which, under considerations of Charity, suggest the assignment of content P 

to #P#. To this extent inferential role semantics seems on the right track. Suppose, how-

ever, that whenever a sentence of the same orthographic type as #P# shows up in S’s 

‘desire box’, S has a strong tendency to reject any course of action which would tend to 

bring it about that P. In other words, S acts in a way we would expect if she were to desire 

that ¬P. In this case, to attribute to her a desire that P just because #P# can be found in 

her desire box would be absurd. What #P# does when it’s in S’s ‘desire box’ matters. It’s 

at least conceivable that one and the same kind of M-representation might, by virtue of 

being involved in different cognitive processes, underlie (say) a belief that P and a desire 

that Q, for very different Ps and Qs. 

In other words, it may not be reasonable to disassociate the content of an M-represen-

tation #P# from the particular role that #P# plays, and different types of M-representation 

might be tied to particular kinds of attitudes. This possibility leads us, finally, to func-

tional role semantics, wherein both the content of an attitude state, and the role played by 
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whatever #P# realises it, are accounted for in unison. According to functional role seman-

tics, the meaning of #P# and what it does (or should do) are inextricably bound together: 

if #P# is the psychologically real basis for S’s ϕ-ing that P, then what it does (should do) 

in that capacity also grounds the fact that it’s an attitude about P—the connection that 

#P# has with P is a function of its unique causal role. Although functional role semantics 

is not committed to treating M-representations as either map-like or sentence-like (or oth-

erwise), it’s uniquely well-suited for fixing the content of map-like structures. This is in 

contrast with the compositionalist and inferentialist strategies, which work best with a 

sentential view. 

It should come as no surprise by now that wherever something like functional role 

semantics is discussed, there is a very strong focus on characterising (individual) beliefs 

in particular, though desires occasionally receive some attention. Other kinds of atti-

tudes—including credences and utilities—are rarely mentioned. Regarding beliefs, we 

generally hear that #P# is the basis for a belief that P just in case it satisfies all or at least 

most of the following conditions: 

 

(1) In conjunction with a desire that Q, #P# leads to behaviour which would tend to bring it 

about that Q at worlds where P is true (along with all the subject’s other beliefs) 

(2) In conversation, #P# leads to an assertion that P whenever the question of whether P or 

¬P is conversationally salient and sincere assertion is rewarded 

(3) Where P can be determined observationally, then, in optimal conditions, #P# may be 

tokened following an observation that (implies) P, and will be tokened only if P 

(4) In optimal conditions, reflection on the contents of other beliefs which straightforwardly 

imply P will lead to a tokening of #P# 

 

I am inclined to take (2) as a special case of (1), both of which can be taken as implications 

of the Belief-Desire Law. Following Stalnaker (1984), we can refer to (1) and (2) as for-

ward-looking roles: they inform us as to the kinds of states that a belief that P typically 

brings about, whereas backward-looking roles (like (3) and (4)) inform us as to the kinds 

of states which typically bring about a belief that P.  

The Belief-Desire Law is usually also taken to specify the characteristic functional role 

of desiring that P as well—that is, functional role semanticists will generally assert that 

#Q# underwrites a desire that Q if: 

 

(5) In conjunction with a belief that P, #Q# leads to behaviour which would tend to bring it 

about that Q at worlds where P is true (along with all the subject’s other beliefs) 

 

Nothing like (3) and (4) seem to apply to desires, however—these two account for the 

special epistemic function that beliefs are supposed to play, whereas desires are usually 

taken to be characterised primarily in terms of their motivational function.  
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There are, in other words, two basic kinds of functions that beliefs are generally as-

sumed to play, while desires perform just one: beliefs and desires jointly guide behaviour, 

and beliefs are also supposed to change in response to evidence and reasoning. The func-

tionalist account of credences and utilities that I will suggest in the next section will have 

the same character, mutatis mutandis—though it is also compatible with credences and 

utilities playing other roles not yet mentioned. However, unlike a functional role seman-

tics grounded in (1) to (5), which apply to individual beliefs and desires, I will provide 

functional roles in the first instance for total credence and total utility states. 

In one form or another, (1) to (5) capture the most commonly cited roles associated 

with beliefs and desires. See, e.g., (Pettit 1993), (Lewis 1972, 1994), (Shoemaker 2003), 

and especially (Loar 1981), who emphasises versions of (1) and (3) in particular. Stal-

naker also bases his account of belief on versions of (1) and (3) (and his account of desire 

on a version of (5)), asserting that: 

 

Very roughly, to believe that P is to be in a state that is sensitive to the information that P, 

and that disposes the agent to do what would best satisfy his desires if P (together with his 

other beliefs) were true. (1999a, 152) 

 

It is worth pausing briefly on a small exegetical matter here, as it will help us to clarify 

the nature of functional role semantics. In his (1984), Stalnaker asserts that “Our [beliefs] 

represent what they represent not only because of the behaviour they tend to cause, but 

also because of the events and states that tend to cause them” (18); and later, that “Both 

the forward-looking and the backward-looking aspects of [beliefs and desires] are essen-

tial to the explanation of how they can represent the world” (19, emphasis added). These 

passages suggest a functional role semantics based primarily on (1) and (3), where both 

are treated as being important vis-à-vis the content of our attitudes. 

At the same time, however, Stalnaker also sometimes seems to suggest that (1) and (3) 

have distinctive roles to play in the explanation of belief, with (3) fixing the content of 

the attitude and (1) fixing the type of attitude that it is (e.g., a belief rather than a desire):  

 

We believe that P just because we are in a state that, under optimal conditions, we are in 

only if P, and under optimal conditions, we are in that state because P, or because of some-

thing that entails P. But a causal account of belief … cannot, I think, replace [a pragmatic 

analysis of belief in terms of the Belief-Desire Law], it can only supplement it. For an 

account of belief must explain, not only how belief can represent the world, but also what 

distinguishes belief from other kinds of representation states … Beliefs have determinate 

content because of their presumed causal connections with the world. Beliefs are beliefs 

rather than some other representational state, because of their connection, through desire, 

with action. (1984, 18-19, emphasis added) 
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A natural reading of this passage is that Stalnaker proposes to explain the content of be-

liefs via indication relations, and then to distinguish beliefs from other representational 

states by means of their distinctive roles in cognition.45 This is similar to the two-step 

strategy pursued by Boghossian, above, and distinct from the strategy that I want to pur-

sue for characterising credences and utilities. 

It is difficult to reconcile the foregoing passages, and I will not try to here. What I do 

want to note, however, is that a functional role semantics is not committed to supposing 

that any one role has explanatory priority with regards to content. In particular, the version 

of the view that I will suggest in the next section treats the forward-looking roles of cre-

dences and utilities (in particular, their connection with preferences) as being semanti-

cally important—even if, ultimately, backward-looking roles may be required as well. 

Before we move on, I want to make two points about how functional role semantics 

should be cashed out. First of all, note that if functional role semantics is to going to 

supply an account of the content of an attitude ϕ, then the roles associated with ϕ must be 

capable of pinning down an appropriately unique content. For instance, while role (2) 

might differentiate #P# as a basis for a belief rather than a desire, we could not charac-

terise a belief that P only using (2) as that role does not give us enough information to 

work out #P#’s content (or even very tightly constrain the possibilities). Likewise, most 

have argued that (1) and (5) by themselves aren’t enough to functionally characterise what 

it is to believe that P and desire that Q, on the basis of informal arguments that suggest 

that any given pattern of behaviour is consistent with an extremely wide range of inter-

pretations consistent with the Belief-Desire Law (§4.2). If a functional role semantics for 

ϕ is to get off the ground, then, a strong case needs to be made for thinking that the roles 

associated with ϕ can fix upon a unique assignment of contents (and, of course, that they 

fix upon the right contents). 

Secondly, functional role semantics (as I am here understanding it) need not restrict 

itself to straightforwardly causal roles—that is, roles of the form “ϕ-ing that P causes x” 

and “ϕ-ing that P is caused by y”. The examples (1) to (5) are more plausibly understood 

as normative roles, in one sense of ‘normative’ or another. There are two obvious ways 

to naturalistically cash out this notion of ‘normativity’. The first is statistical: (1) to (5) 

characterise statistically normal causal connections associated with the psychologically 

real entities which underlie our beliefs and desires; e.g., a belief that P typically (but not 

always) leads to behaviour which tends towards desire satisfaction at worlds where P is 

true. Alternatively, one can appeal to the role that a belief that P (typically) plays in a 

typical member of the population/species (cf. §3.3.1). 

 
45 Interestingly, desires are said to “have determinate content because of their dual connection with 

belief and action” (19)—not because of any prior causal connections or other backward-looking connec-

tions. 
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The second kind of normativity is biological: it is not implausible that (1) to (5) char-

acterise the proper functional roles of beliefs and desires; e.g., a belief that P would, were 

it functioning properly under ancestrally normal conditions, lead to behaviour which 

tends towards desire satisfaction at worlds where P is true—regardless of whether the 

belief brings that kind of behaviour about as a matter of fact. One might, therefore, com-

bine functional role semantics with a kind of non-compositionalist teleosemantics, if the 

‘roles’ involved in characterising the attitude are cast in terms of those state’s proper 

functions. For an example of this strategy, see (Papineau 1984, 1987), where appeal is 

made to the proper functions of whole belief and desire states in order to account for the 

contents of those states in a non-compositional manner. 

4.5 Realist characterisational representationism 

It is towards the development of a functional role semantics for credences and utilities 

that a representation theorem of the right kind would seem especially useful for the psy-

chological realist. Any such theorem will: 

 

(i)  Have preference conditions that are at least approximately satisfied by the majority of 

(properly functioning) ordinary agents 

(ii)  Have a reasonably strong uniqueness condition 

(iii)  Establish a representation scheme with complete models of agents’ credences and utilities 

which fit reasonably well with the intuitive and empirical data  

 

For what follows, it will be helpful to keep in mind the distinction between mentalistic 

and behavioural preferences (§2.2). Representation theorems (or more accurately, their 

Decision-theoretic Interpretations) can be distinguished by the kind of preferences to 

which their conditions refer—there are those which are built around a behavioural inter-

pretation of ≽, and those built around a mentalistic interpretation. I will discuss the con-

sequences of this distinction in more detail below; for now, I will simply speak in terms 

of ‘preferences’ without specifying the kind. 

The basic idea behind the kind of psychologically realist characterisational represen-

tationism that I have in mind is functionalist, where credences and utilities are identified 

at least in large part through their explanatory role in the production of intentional behav-

iour. Representation theorems could be used to precisely spell out either the content-de-

termining functional role associated with our credence and utility states, or at least a very 

important part of that role. In particular, a representation theorem of the right kind could 

be used to supply a joint role for an agent’s total credence and total utility states, which—

depending on the strength of the theorem’s uniqueness condition—is capable of either 

fully determining the content for those states, or at least narrowing that content down to 

a relatively small range of possibilities. 
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Consider, for example, a theorem T—let us suppose it’s an otherwise standard ex-

pected utility theorem with a non-probabilistic credence function—which satisfies (i) to 

(iii) with the Standard Uniqueness Condition. Nothing hinges on whether T is an expected 

utility theorem, but supposing as much will make the following discussion more straight-

forward. The example can easily be modified for NCU theorems—as noted in §3.3, al-

most every representation theorem which has been developed in the last 100 years leaves 

us either with an expected utility model, or something which comes very close to ℰ𝒰-

maximisation—e.g., ℰ𝒰-maximisation with some fudge-factor that accounts for risk 

aversion. By hypothesis, T allows us to pair the total preference patterns of ordinary 

agents with what is an effectively unique representation of that agent as an expected utility 

maximiser, where that representation corresponds closely to our intuitions regarding what 

credences and utilities the agent in question might actually have under those conditions. 

To the extent that we are psychological realists, and thus think that ordinary agents’ 

credences and utilities are underwritten by M-representations, establishing T paves the 

way for a functional role semantics based on the following joint roles: 

 

(6) A total credence state ℬel, in combination with a total utility state 𝒟es, (typically) leads 

to a preference system <ℬ𝒪𝒫, ≽> such that x ≽ y iff the expected utility of x is greater 

than the expected utility of y 

(7) A total preference system <ℬ𝒪𝒫, ≽> which satisfies T’s preference conditions is (typi-

cally) caused by a total credence state ℬel in combination with a total utility state 𝒟es.46 

 

We don’t need the representation theorem to establish (6); simple mathematics is enough 

to establish that, given ℬel, 𝒟es, and the posited ℰ𝒰-maximisation rule, <ℬ𝒪𝒫, ≽> will 

have such-and-such a structure. However, the theorem does allow us to establish (7), 

which is needed to ensure that the specified functional roles are capable of pinning down 

an effectively unique assignment of credences and utilities. Contrast this with the use of 

the Belief-Desire Law to functionally characterise beliefs and desires, where the standard 

complaint is that these roles are compatible with far too many interpretations. 

(6) and (7) specify roles for total credence and utility states, but are neutral with respect 

to how those states must be psychologically realised. They are therefore consistent with 

a map-like view on the structure of thought, where each agent’s total credence and utility 

states are underwritten by just one, or relatively few, informationally rich M-representa-

tions. They are also consistent with a sentential view, in the sense that they suggest that 

contents can be assigned to whole collections of sentences at once. If the sentential view 

were correct, then, the task would be to use that assignment to determine the contents of 

 
46 (6) and (7) are not equivalent: ℬel and 𝒟es could typically bring about a particular system of prefer-

ences <ℬ𝒪𝒫, ≽>, without it being the case that <ℬ𝒪𝒫, ≽> is typically the result of ℬel and 𝒟es (e.g., if 

there are many other things which often lead to <ℬ𝒪𝒫, ≽>). 
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individual sentences (and concepts), presumably by considering the role that each such 

sentence plays with respect to the whole and working backwards from there. 

As was noted with (1) to (5) above, (6) and (7) may be construed as normative roles, 

rather than straightforward causal roles. For instance, it’s not implausible to suppose that 

something like (6) specifies the causal role of our total credence and utility states when 

they are functioning properly in normal conditions—in which case we would not expect 

that having preferences <ℬ𝒪𝒫, ≽> which satisfy T’s preference conditions would auto-

matically qualify an agent as having credences ℬel and utilities 𝒟es (as would be implied 

under CCR). Current scientific models of decision-making tend to idealise away from 

factors known to interfere with our deliberative capacities, such as intoxication and so on; 

and they are only intended to model typical subjects. This weakens the posited connection 

between preferences, credences, and utilities to one that only holds under the right condi-

tions, but that should not stop us from using such weakened connections to characterise 

credences and utilities. 

Note, also, that if T’s uniqueness condition were not as strong as the Standard Unique-

ness Condition, then further functional roles would have to be called upon to pin down 

appropriate contents. Indeed, even if (6) and (7) managed to pin down a unique model of 

the agent’s credences and utilities, I expect that it would be valuable to take into account 

other roles besides—after all, neither (6) and (7) take into account how an agent’s cre-

dences do (or should) change in response to evidence and reasoning, which seems to be 

around about as important for the understanding the nature of credences as is their role in 

the production of preferences (§3.3.1). 

An analogy may be helpful here. Suppose the task is to outline the meaning of the term 

‘water’, which I will assume can be best accounted for by some form of causal descrip-

tivism.47 (I have defended descriptivism elsewhere; see Elliott, McQueen et al. 2013.) We 

might begin with the description D, that water is the potable, clear liquid around here 

which comes out of our taps that we need to drink to survive. That would probably be 

enough to fix the referent in this world and in most of the nearby possibilities that we 

might consider—but it doesn’t tell us everything there is to the meaning of ‘water’. There 

are many other properties associated with our use of the term which aren’t mentioned in 

that short description; e.g., fills the lakes and oceans, falls from the sky as rain, boils at 

100° C and freezes at 0° C. There is more packed in to our concept than we need to pin 

down the referent. Roughly speaking, D captures a large and centrally important chunk 

of the meaning of ‘water’, but it leaves a lot out as well; and there is no particular reason 

 
47 That is, the meaning of ‘water’—or at least one of its meanings—can be given by a (potentially 

infinite) description which uniquely identifies water across a range of possible scenarios considered as 

actual (Lewis 1984, 1994, Kroon 1987, Jackson 1998). The description is generated via a collection of 

properties (or sometimes: platitudes) that the speaker associates with their use of the term. 
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to think that D should be taken as paramount when other descriptions could also do the 

job. 

Likewise, appeal to other functional roles would not imply the insignificance of (6) 

and (7) for the characterisation of credences and utilities. Credences have an epistemic 

role to play as well, besides their role in guiding behaviour, but both kinds of role are 

central to understanding what credences are. It is, I think, too much to expect any one 

representation theorem that it provide the whole story about what it is to have such-and-

such credences and utilities—especially in light of the fact that, as emphasised in §3.3.1, 

having credences and utilities is not simply a matter of having particular preference pat-

terns. But where credences and utilities are to be understood and characterised in terms 

of the roles that they play (or are supposed to play), something like (6) and (7) very plau-

sibly form an important part of what it is to have those attitudes. 

Let us close by considering how this realist position relates to the naturalisation pro-

ject. As I have explained it, a functional role semantics is not committed to naturalisabil-

ity—although, as a matter of fact, most functional role semanticists have adopted the po-

sition in their search for a fully naturalistic account of the attitudes. In the long run, the 

naturalistic functional role semanticist will want to cast everything in terms of external 

causal inputs and behavioural outputs, with all reference to intentional or otherwise men-

tal phenomena having been Ramseyfied away (see Lewis 1970, 1972).48 

To this end, however, a naturalistic functional role semantics for beliefs and desires is 

but a twinkle in the eyes of some philosophers. It is clear that the commonly noted func-

tional roles for belief and desire are not cast in naturalistic terms: each of (1) to (5) refer 

to other intentional states, and it’s plausible that reference would need to be made to other 

mental states to spell out the ‘optimal conditions’ mentioned in (3) and (4). As is widely 

recognised, the causal properties of any one mental state will usually depend on the pres-

ence or absence of a range of other mental states, and no Ramseyfication can exist without 

a complete specification of the relevant causal role of each of the many interconnected 

mental states which interact to determine any one mental state’s causal properties. We are 

a long way from giving any such specification for beliefs and desires. At best we have 

just a rough idea of how our beliefs and desires connect to behaviour and to the non-

intentional world more generally. 

 
48 Not all philosophers who pursue a broadly functionalist approach wish to further the naturalisation 

project. Schwitzgebel (2002, 2013), for instance, explicitly opts to set aside naturalisation, and argues in-

stead for what he calls liberal dispositionalism (see also Baker 1995). In outline, Schwitzgebel’s view is 

that beliefs are dispositions (or collections of dispositions), including dispositions to act in such a way as 

to tend to bring about what one desires à la the Belief-Desire Law. However, liberal dispositionalists allow 

for the characterisation of what it is for S to believe that P to be given partly in terms of other propositional 

attitudes and mental states—including, potentially, other beliefs—while making no promises to eventually 

naturalise away any reference to those states. 
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Part of the problem here is that a functional role semantics for belief and desires has 

no way of working backwards from facts about behaviour to facts about our beliefs and 

desires. Appeal to the Belief-Desire Law just doesn’t allow us to constrain the possible 

assignments of beliefs and desires tightly enough. The promise of a solution to this prob-

lem accounts for much of the appeal of characterisational representationism. Indeed, I 

suspect a great deal of progress could be made towards a naturalistic, functionalist con-

strual of credences and utilities if we could prove a representation theorem of the right 

kind, which took us from a typical subject’s behavioural preference system—character-

ised in purely naturalistic terms—to a unique and plausible assignment of credences and 

utilities. The development of such a theorem would at least allow us to take steps towards 

a completely naturalistic reduction of credences and utilities. 

Unfortunately, as will become clear in the chapters that follow, such a theorem has yet 

to be developed. Indeed, it does not appear that decision theorists have even come very 

close to developing a theorem appropriate for such purposes. We may, one day, have a 

representation theorem that is well-suited for advancing the naturalisation project, but it 

will probably not look much like any of the theorems which exist today. In particular, it 

will probably not involve preferences over act-functions or lotteries, for reasons to be 

discussed in Chapter 5 and Chapter 6. Act-functions and lotteries form the standard way 

of characterising the basic objects of preference in any representation theorem geared 

towards a behavioural interpretation of ≽, but they also lead to the most worrying issues 

with those theorems with respect to their application to characterisational representation-

ism. The more plausible option, given the theorems we currently have, would be to appeal 

to a theorem which specifies conditions on mentalistic preferences (see §6.2 and §8.3)—

or hold out hope for a new and better theorem. Either option, however, means putting the 

naturalisation project on hold, at least for a time. 

Of course, to develop a functional role semantics with (6) and (7) characterised in 

terms of mentalistic preferences is not incompatible with the naturalisation project—it 

merely fails to clearly advance that project. (Compare: characterising beliefs in terms of 

(1) to (4) does not entail that they cannot be naturalised, but neither does it immediately 

point the way to naturalisation.) Perhaps the naturalistic philosopher could seek to char-

acterise credences and utilities in terms of mentalistic preferences, offering a promissory 

note to naturalise mentalistic preferences at some point down the line—after all, some 

such promissory note has been offered by every purportedly naturalistic account of beliefs 

and desires yet developed.  

I will have more to say on whether the naturalisation of mentalistic preferences is fea-

sible in Chapter 9; in the interim, the question is whether any current representation the-

orem has the right properties to be a plausible foundation for characterisational represen-

tationism. 
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4.6 Summary 

There were three main lessons drawn in Chapter 3. First, credences and utilities are not 

just preference states, nor does it appear that having any particular pattern of preferences 

is sufficient for having such-and-such credences and utilities. Credences in particular play 

an epistemic role, and an adequate account of what they are should accommodate this 

fact. Secondly, the proponent of characterisational representationism ought to avoid the-

orems with preference conditions that ordinary agents do not come close to satisfying. 

And thirdly, she also ought to avoid theorems with excessively restrictive representational 

resources. 

An appeal to a theorem with the right properties would ensure that characterisational 

representationism stays in line with the final two of these lessons. And, as we have now 

seen, there are several ways to cash out characterisational representationism while keep-

ing an agent’s system of preferences metaphysically and conceptually distinct from her 

system of credences and utilities, while taking into account the special epistemic role that 

credences are supposed to play. Psychological non-realists aren’t committed to Classical 

Characterisational Representationism, as they might (like Lewis and other interpretivists) 

appeal to information which goes beyond agents’ preferences. The same, of course, can 

be said for psychologically realist versions of characterisational representationism, which 

might (a) appeal only to the normative (rather than actual) roles that credences and utili-

ties have in the production of preference patterns, and/or (b) appeal also to other factors 

beyond agents’ preferences. With the right representation theorem, characterisational rep-

resentationism could avoid the main pitfalls that are notoriously associated with Naïve, 

Extreme, and Classical Characterisational Representationism. 

Moreover, the foregoing review gives strong reason to take the characterisational rep-

resentationist’s approach seriously. We currently have no fully worked out account of 

beliefs and desires; instead, what we have is a number of rough ideas much in need of 

further development. A recurrent theme, though, is that we ought to be able to characterise 

the propositional attitudes by reference to what they do (or should do, or typically do, or 

do under certain conditions)—where one of the most important things that beliefs and 

desires do involves their role in the explanation of preferences and intentional action. It 

would be difficult to understate the importance of the Belief-Desire Law for most attempts 

to understand and characterise beliefs and desires. As we have seen, it is central to almost 

all varieties of Basic Psychological Realism regarding those attitudes, where it’s used to 

characterise both belief-like and desire-like roles. It also forms a centrepiece for a func-

tional role semantics for beliefs and desires, and for each of the two kinds of psycholog-

ical non-realism that we looked at in §4.2. 

When it comes to the metaphysics of credences and utilities, it seems fair to expect 

that the decision-theoretic analogue of the Belief-Desire Law—the principle of expected 

utility maximisation (or something very close to it)—is likely to play just as central a role. 
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While they might do other things besides, if credences and utilities do anything, they are 

closely connected to our preferences—and plausibly via something which looks roughly 

like expected utility maximisation. To have a theorem, then, which connects preference 

patterns to a very limited range of plausible credence and utility assignments, would seem 

a very useful resource for the precise functional characterisation of those attitudes. 



 

 

 

 

CHAPTER FIVE 

The Instability of Savage’s Foundations 

Savage’s The Foundations of Statistics (1954) is centred around one of the most well-

known and admired representation theorems ever developed. David Kreps describes Sav-

age’s theorem as the “crowning glory of choice theory” (1988, 120). Likewise, in sum-

marising his widely-cited review of over two dozen CEU representation theorems, Peter 

Fishburn has this to say: 

 

Savage’s [theorem] is suitable for a wide variety of situations, its axioms are elegant and 

intuitively sensible, and its representation-uniqueness result is easily connected to assess-

ment techniques […] I regard it as one of the best. (1981, 194) 

 

The admiration for Savage’s work shows through in its influence; indeed, it would not be 

unfair to characterise axiomatic decision theory since 1954 as a series of footnotes to 

Savage.49 The majority of representation theorems—for both CEU and NCU—that exist 

today are based upon the same basic formal system as the one that Savage developed, 

usually with only minor tweaks here and there. 

Despite all this—or perhaps because of it—Savage’s Foundations has also attracted a 

lot of criticism. At the forefront of this critique is the so-called constant acts problem.50 

As we will see, it’s not clear how much of a problem there is here, at least for character-

isational representationism. Nevertheless, there are greater concerns on the horizon, 

which have their origins deep within the formal paradigm that Savage developed and 

affect every theorem based on his system. 

It would be impossible to look at every representation theorem that falls within the 

Savage paradigm—these number well into the dozens. Instead, I will begin in §5.1 by 

describing Savage’s formal framework and theorem in some detail. Following that, I will 

consider a number of reasons why Savage’s theorem, and other theorems based on the 

same framework, are unsuitable as a basis for characterisational representationism. In 

 
49 Savage himself was greatly influenced by Bernoulli (1738), Ramsey (1931), de Finetti (1931, 1964), 

and von Neumann and Morgenstern (1944), amongst others. 

50 Two further complaints that are commonly made against Savage’s theorem are that he requires his 

set of states to be uncountable, and the so-called problem of small worlds, neither of which I will discuss 

here. See (Joyce 1999, 70-7, 110-13) for a thorough discussion of the latter. 
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§5.2 I focus on the constant acts problem, whereas in §5.3 and §5.4 I consider what I take 

to be two more fundamental issues with Savage’s framework. 

5.1 Savage’s Foundations 

My exposition of Savage’s theorem will be in two parts. In §5.1.1, I begin with a relatively 

informal characterisation of the basic elements needed to understand his theorem, and 

then in §5.1.2, I outline Savage’s preference conditions and say a few words about the 

final representation result. 

5.1.1 Preliminaries 

According to Savage, the basic objects of preference are acts. Intuitively, acts are the 

kinds of things that we might choose to do in a given decision situation. For instance, 

when bored, one might choose to read a book or go fishing; at night, one might go to bed 

or stay awake; in a game of poker, hold ‘em or fold ‘em. We cannot choose, however, to 

slow the speed of light, nor stop the Earth spinning: such things we could not realise even 

if we intended to, so in an intuitive sense they are not acts available to us. It’s difficult, 

however, to go very far beyond this rather vague gloss on what acts are exactly, and I will 

not try to here. For now, I will adopt the intuitive notion of an act, though I will have 

more to say on the issue later. 

Suppose we have a non-empty set, 𝒜’ = {α, β, γ, …}, containing a range of acts avail-

able to some subject S in an unspecified decision situation. As only one act in 𝒜’ can ever 

be realised by the decision-maker, 𝒜’ should be understood as containing act types rather 

than tokens. Alternatively, one could think of 𝒜’ as a set of propositions which specify 

that S performs one of the acts available to her—there are no important issues that arise 

from construing 𝒜’ as a set of acts or propositions about acts. 

There are three things that need to be said about how 𝒜’ is to be specified. First of all, 

every act α in 𝒜’ should be such that S is certain that she would perform α, if she were to 

intend as such. For instance, S might intend to travel to New York, but whether she suc-

ceeds or not depends on a number of factors outside of her control which could, for all 

she knows, prevent her from arriving. On the other hand, in most cases she can, say, reach 

for the nearest object, and she can be sure that she will succeed in doing so should she so 

choose. Secondly, acts can be described at different levels of specificity; for instance, to 

read Moby Dick is one way to read a book, but it’s not the only way. I will assume that 

the acts in 𝒜’ are specified at least at a reasonably fine-grained level. And finally, 𝒜’ 

should be specified in such a way that S must perform at least one act in 𝒜’, and the 

performance of any one such act in 𝒜’ should preclude the performance of any other. 

(Thus, if read Moby Dick is in 𝒜’, read a book cannot be—but read the Odyssey might 

be.) The motivation for these restrictions on 𝒜’ will be discussed in §5.4. 
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Savage’s central motivation for characterising the basic objects of preference as acts 

was that he intended a behavioural interpretation for his use of ≽. For Savage, an agent’s 

preference ranking over acts is supposed to somehow directly encode her behavioural 

dispositions in choice situations, thus making her preferences—and hence her credences 

and utilities—open to empirical investigation (see, for example, Savage 1954, 27-30). As 

he put it, “Loosely speaking, [α] ≽ [β] means that, if [the agent] were required to decide 

between α and β, no other acts being available, he would decide on α” (1954, 17). 

Acts usually have a range of different outcomes, depending on the different states that 

the world might be in. If I read a book then I might either become entertained or become 

annoyed, depending on the (presently unknown to me) contents of its pages; and if I go 

fishing, I might catch a fish or catch nothing, depending on what’s in the water. Let 𝒪 = 

{o1, o2, o3, …} contain descriptions of each of the possible outcomes that might arise 

given any act in 𝒜’, focussed in particular on describing those states of affairs that S cares 

about. (I do not care, for instance, that if I go fishing, then I will still have an even number 

of pencils in my office, so we can leave that out of the description of the outcome.) As 

Savage describes the outcomes in 𝒪, “They might in general involve money, life, state of 

health, approval of friends, well-being of others, the will of God, or anything at all about 

which the person could possibly be concerned” (Savage 1954, 14). For reasons to be clar-

ified below, the descriptions ought to be fairly specific (if not maximally specific) with 

respect to what S cares about, and—importantly—they should be mutually exclusive. 

Since exactly one act in 𝒜’ must be performed, the set of outcomes is jointly exhaustive 

of the possibilities. 

Finally, we will need a set of the states, 𝒮 = {s1, s2, s3, …}, upon which the different 

outcomes of S’s acts depend. The collection of states should be a partition of some pos-

sibility space (I will leave it open which space); i.e., a collection of propositions such that 

exactly one is true. Savage does not explicitly describe states in much detail. There are, 

however, two critically important properties that we need to assume states have if Sav-

age’s theorem is to have a plausible interpretation qua decision theory, which I will out-

line now. 

First of all, states should be independent of whatever act the agent might choose to 

perform. In the literature, this property of states is referred to as act-independence. As 

Allan Gibbard and William Harper (1978) have pointed out, Savage’s system is compat-

ible with (at least) two notions of independence being applied in the precisification of this 

requirement. The first is evidentially independence, where a state s is evidentially inde-

pendent of the performance of an act α just in case S’s credences that s is true under the 
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assumption that she performs α is equal to her credences that s is true under the assump-

tion that she does not perform α.51 The second kind of independence they refer to as 

causal, though it would be better termed counterfactual independence. A state s is coun-

terfactual independent of the performance of an act α just in case s would hold if α were 

performed, and s would hold if α were not performed. 

For the purposes of the present exposition, it’s not important which of these two no-

tions of independence is used. I will, however, note a consequence of applying either—

namely, that states must be logically independent of acts: 

 

Definition 5.1: Logical independence 

A state s is logically independent of the performance of an act α iff s is consistent with α 

being performed and α not being performed 

 

This allows us to define the key property of act-independence: 

 

Definition 5.2: Act-independence 

A state s is act-independent (with respect to a choice of 𝒜’) iff s is logically independent 

of the performance of any α ∈ 𝒜’ 

 

As Savage requires that every state in 𝒮 is act-independent, a state cannot entail that a 

particular act in 𝒜’ is chosen (or not chosen). 

Secondly, states should be outcome-functional: 

 

Definition 5.3: Outcome-functionality 

A state s is outcome-functional (with respect to a choice of 𝒜’ and 𝒪) iff the performance 

of any s-compatible α ∈ 𝒜’ at s uniquely determines that a particular outcome o ∈ 𝒪 obtains 

 

The upshot of assuming outcome-functionality is that, for each state s, there will be a 

function which maps every act in 𝒜’ which might be performed at s to an outcome in 𝒪; 

if every act in 𝒜’ is compatible with s, then it will be a total function on 𝒜’. Note that 

 
51 Evidential independence is standardly characterised in terms of probabilistic independence; viz., if 

ℬel is a probability function, then s is evidentially independent of the performance of α (relative to ℬel) 

just in case ℬel(s|perform α) = ℬel(s|don’t perform α), where ℬel(P|Q) = ℬel(P & Q)/ℬel(Q). If s is 

evidentially independent of all acts in 𝒜’, which are by hypothesis mutually exclusive and jointly 

exhaustive, then for any act α ∈ 𝒜’, ℬel(s|perform α) = ℬel(s|don’t perform α) = ℬel(s). I have avoided this 

formulation of evidential independence because of its use of conditional probabilities, the application of 

which raises concerns insofar as S isn’t probabilistically coherent. There are some difficulties with the 

formulation of evidential independence given here, but the precise formulation is not important for the 

discussion that follows. 
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act-independence and outcome-functionality are not formal requirements on the specifi-

cation of 𝒮, which for the purposes of the theorem may be characterised sparsely as any 

non-trivial partition of non-empty set. Rather, act-independence and outcome-functional-

ity are two properties that we must assume the states in 𝒮 have, if Savage’s theorem is to 

have a plausible interpretation qua decision-theory. 

In Savage’s framework, states are the ultimate objects of uncertainty: it is from 𝒮 that 

Savage constructs the domain of his ℬel function—namely, the set of events, ℰ = {E1, E2, 

E3, …}. Each event is a set of states, and Savage assumes that every set of states is in-

cluded in ℰ (i.e., ℰ = 2𝒮). Although events are technically sets of states rather than propo-

sitions per se, we do no harm in treating events as propositions. As all states are pairwise 

inconsistent, every event corresponds directly to one and only one proposition, viz., the 

disjunction of each of the states in the event. We will therefore treat events as proposi-

tions. It should be clear, given this characterisation of events, that they inherit the event-

equivalent property of act-independence from the states of which they are composed (but 

they don’t inherent anything like outcome-functionality). 

Savage’s central insight was the recognition that, given the way we have characterised 

𝒮 and 𝒪, each act in 𝒜’ can be uniquely modelled by a function form 𝒮 to 𝒪. The idea is 

that each such function determines a unique definite description that identifies a particular 

act that the agent might perform—or at least a class of acts which are, from the perspective 

of the decision-maker, not worth distinguishing: 

 

If two different acts had the same consequences in every state of the world, there would 

from the present point of view be no point in considering them two different acts at all. An 

act may therefore be identified with its possible consequences [at different states of the 

world]. (1954, 14) 

 

(Of course, if the outcomes are specified in enough detail, it’s highly unlikely that two 

acts would have the same outcomes across all states.) Suppose that ℱ is the function that 

pairs the state s1 with the outcome o1, s2 with o2, and so on; we can then say that ℱ repre-

sents: 

 

the act α in 𝒜’ such that, were it performed, then (if s1 were the case, o1 would result) & 

(if s2 were the case, o2 would result) & … 

 

We will refer to any function from a set of states to outcomes as an act-function. Savage’s 

≽ is formally defined on a set of act-functions, and it’s this feature which essentially 

characterises the influential formal paradigm he developed. For most theorems within this 

paradigm, act-functions are total functions on 𝒮 and often only take a finite number of 

values from 𝒪. In the literature, act-functions are often called Savage acts; however it will 
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be helpful for the discussion that follows to distinguish the functions and the acts that 

they supposedly represent. 

Note that the representation of acts as total functions from 𝒮 to 𝒪 would be nonsensical 

if some states were logically incompatible with the performance of some acts—what 

sense would it make to speak of an act’s outcome at a state which implies that the act is 

not performed? Likewise, outcome-functionality is required if a function from states to 

outcomes is to represent an act along the lines described—if, for example, α could only 

ever result in either o1 or o2, but every state in 𝒮 left it indeterminate which of these 

outcomes would result, then there would be no reason to suppose that α corresponds to 

one function from 𝒮 to {o1, o2} rather than any other. 

With the set of events specified as the set of all subsets of 𝒮, it’s worth noting that 

every one of Savage’s act-functions can be expressed equivalently as a mapping from a 

set of mutually exclusive and jointly exhaustive events to outcomes, simply by collecting 

together the states with similar outcomes into a single event. For example, if ℱ(s) = o1 for 

all states s in E, and ℱ(s) = o2 for all states s in ¬E, then we might represent ℱ as (E, 

o1│¬E, o2). More generally, assume the following convention for representing act-func-

tions: 

 

Definition 5.4: Act-function notation 

ℱ = (Ei, oi│…│En, on) iff {Ei, …, En} is a partition of 𝒮 and if s ∈ Ei, ℱ(s) = oi, …, and if s 

∈ En, ℱ(s) = on 

 

This convention will be helpful in laying out Savage’s preference conditions and formal 

results more transparently. 

So far, I have treated acts as a kind of conceptual primitive, with states, outcomes, and 

events being partially characterised by their relation to the acts in 𝒜’. In Savage’s formal 

system, however, the situation appears rather different. Savage begins with two primitive 

sets: 𝒪 and 𝒮. Formally, all that is required of 𝒪 is that it contains at least two members, 

of 𝒮 that it is a non-trivial partition of some non-empty set—sparse characterisations, to 

be sure, but this hides the informal properties they must have if they are to stand for 

collections of outcomes and states respectively. There is no formal primitive which cor-

responds to 𝒜’. Rather, from 𝒮 and 𝒪, Savage constructs the set which we will label 𝒜 = 

{ℱ, 𝒢, ℋ, …}, which contains all total functions from 𝒮 to 𝒪 (i.e., 𝒜 = 𝒪𝒮). 

The construction of 𝒜 from 𝒮 and 𝒪 is perhaps the most influential part of Savage’s 

formal system (and, as we will see, the origin of its biggest problems). However, the order 

of the construction is somewhat misleading—suggesting as it does that acts can be 

straightforwardly defined in terms of states and outcomes. This is not at all the case, as 

the informal characterisations of 𝒮 and 𝒪 above highlight. Outcomes are characterised as 

the possible consequences of performing an act in 𝒜’ under different states of the world, 
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and states are characterised as necessarily consistent with the performance of any act in 

𝒜’ and such that the performance of any act in 𝒜’ determines a unique outcome. There 

is no sense to be made of 𝒮 and 𝒪 as sets of states and outcomes as they were described 

above without a specification of 𝒜’. There is, therefore, a sense in which the set of acts 

proper, 𝒜’, is a kind of informal primitive which underlies any Decision-theoretic Inter-

pretation of Savage’s formal system. 

Given that the states in 𝒮 are act-independent and outcome-functional (with respect to 

a choice of 𝒜’ and 𝒪), it’s clear that every act in 𝒜’ can be uniquely represented by a 

particular act-function in the manner described above. It’s far less clear, however, that 

every possible act-function in 𝒜 corresponds a member of 𝒜’. Nevertheless, Savage as-

sumes that all act-functions are in 𝒜—including, famously, constant act-functions. That 

is, for every outcome o in 𝒪, there is a constant act-function in 𝒜 that maps every state 

in 𝒮 to o. It will be helpful to have special notation for constant act-functions: 

 

Definition 5.5: Constant act-functions 

o = ℱ iff ℱ(s) = o for all s ∈ 𝒮 

 

Assuming that the outcomes are specified rather finely—as they must be, for reasons we 

will return to shortly—it’s extremely doubtful that any constant act-function could serve 

to represent anything real that an agent might choose to do: what acts are there which 

would bring about any given outcome, regardless of how the world turns out to be? Noth-

ing in the pre-theoretic, intuitive construal of the space of possible acts seems to have this 

character. In a nutshell, this is the problem of constant acts, which I will discuss in §5.2. 

Constant act-functions play a number of important roles in Savage’s theorem. For in-

stance, Savage uses preferences between constant act-functions to construct a relative 

utility ranking upon the set of outcomes, which eventually gives rise to the utility function 

𝒟es—the idea being that the subject prefers the constant act o1 to o2 just in case she 

attaches a higher utility to o1 than to o2. This idea finds application then in Savage’s def-

inition of a relative credence relation, ≽b, defined on the space of events. The construction 

of ≽b from ≽ is crucial for the existence of Savage’s ℬel function. In the literature, this 

has come to be known as Savage’s principle of Coherence: 

 

Definition 5.6: Coherence 

For all E1, E2 ∈ ℰ, E1 ≽b E2 iff, for any o1, o2 ∈ 𝒪, if o1 ≽ o2 then (E1, o1│¬E1, o2) ≽ (E2, 

o1│¬E2, o2)  

 

This highly influential principle is prima facie intuitive—at least on the assumption that 

(E1, o1│¬E1, o2) and (E2, o1│¬E2, o2) actually correspond to things the agent can do. Sup-

pose that the agent finds o1 more desirable than o2. So, if she is given a choice between 
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two acts which each might result in either o1 or o2 but under different circumstances, our 

subject should prefer the act which, from her perspective, has the greater likelihood of 

resulting in o1, and the smaller likelihood of resulting o2. If she finds E1 more likely than 

E2 then, accordingly, she should find (E1, o1│¬E1, o2) to be the more desirable act than 

(E2, o1│¬E2, o2). 

Of course, the foregoing reasoning requires the presupposition that o1 obtaining under 

any state in E1 is exactly as valuable for the subject as o1 obtaining under any state in E2, 

and likewise for o2 in ¬E1 and o2 in ¬E2. However, suppose that the following scenario 

occurs: 

 

(a) S considers E1 to be exactly as likely as E2, i.e., E1 ∼b E2 

(b) S prefers the constant act o1 to the constant act o2 

(c) S is generally indifferent between o2 given ¬E1 and o2 given ¬E2 

(d) S finds o1 substantially more desirable on average if it obtains in one of the states in E1 

than if it obtains in one of the states in E2 

 

Such a situation seems coherent; yet, in this case, presumably, the rational choice for S 

would be to prefer (E1, o1│¬E1, o2) to (E2, o1│¬E2, o2), despite the fact that E1 ∼b E2. 

Although both acts have an equal subjective likelihood of resulting in o1 and o2, for the 

former act the outcome o1 is much more desirable to S because it obtains in the right kinds 

of states. If o1 can have a different subjective value for the agent if it obtains in any of the 

states in E1 than it does if it obtains in any of the states in E2, and similarly for o2, then 

the justification for Coherence falls apart.52  

Thus, it is frequently noted in the literature that Savage’s theorem requires that out-

comes are state neutral, where an outcome o is state neutral (relative to an agent S and 

specification of states 𝒮) just in case S’s utility for o does not depend on the state s ∈ 𝒮 in 

which it’s realised. However, simply requiring state neutrality is not quite enough to fully 

justify Coherence, which requires that the choice between (E1, o1│¬E1, o2) and (E2, 

o1│¬E2, o2) depends solely on the (presumed constant) values for o1 and o2, and the rela-

tive likelihoods of E1 and E2. To begin with, note that state neutrality does not yet rule 

out that the utility of an outcome may depend upon the act which gave rise to it. Thus, 

something stronger than state neutrality is needed, which I will call context neutrality: 

 

Definition 5.7: Context neutrality 

An outcome o is context neutral (relative to an agent S and a choice of 𝒮 and 𝒜’) iff S’s 

utility for o depends neither on the state s ∈ 𝒮 in which it’s realised nor on the act α ∈ 𝒜’ 

from which it originates 

 
52 The same can be said for the definition of null events, and for the conditions SAV3, SAV4 and SAV5, 

all discussed below.  
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Even the assumption of context neutrality is not quite enough, though, for it’s conceivable 

that acts themselves could be objects of utility independently of their potential conse-

quences. Thus Savage is forced to make an assumption about how agents value acts; 

namely, that they have no intrinsic preferences between acts, or preferences which don’t 

depend upon the possible outcomes that the act might have. Without this assumption, it 

could be the case that the subject prefers o1 to o2, finds E1 more likely than E2, yet has 

such a strong intrinsic distaste for the act represented by (E1, o1│¬E1, o2) that she is 

disposed to prefer (E2, o1│¬E2, o2) instead despite its having the smaller likelihood of 

resulting in the best outcome. 

Without these two assumptions, Savage’s system becomes highly implausible, both 

descriptively and normatively. A natural thought here is that if agents care about the spe-

cific acts they perform, then that such-and-such an act was performed can be built into 

the description of the outcomes that obtain. Indeed, the most straightforward way to en-

sure the aforementioned requirements hold is to treat outcomes as conjunctions of states 

and acts. If outcomes are characterised in this way, then context neutrality is ensured and 

we don’t need to assume that agents have no intrinsic preferences for acts.  

However, this move does not sit well with other aspects of Savage’s system (Joyce 

1999, 56). Note, first of all, that since every outcome gets paired with every state by at 

least one act-function, and assuming that every act-function represents an act in 𝒜’, it 

follows that states must be outcome-independent in the following sense:53 

 

Definition 5.8: Outcome-independence 

A state s is outcome-independent (with respect to a specification of outcomes, 𝒪) iff s is 

logically consistent with any outcome o ∈ 𝒪 

 

For example, an outcome o cannot imply that a particular state s does not obtain, since (it 

is assumed that) there is some act the agent could perform which would bring about o if 

s were to be the case. Secondly, since every outcome is in the range of multiple act-

functions, no outcome can imply that a particular act was chosen (though every outcome 

will imply that some range of acts was not chosen). 

Thus, if the descriptions in 𝒪 are intended to specify the various things the decision-

maker may care about, the implication here is that the decision-maker has no intrinsic 

interest in what act she performs. This is, of course, also in the background of Savage’s 

assertion that two acts with the same outcomes at all states are not worthy of being dis-

tinguished. Roughly put, Savage assumes that, from the decision-maker’s perspective, 

only potential outcomes matter: the final decision model is one where the choice between 

acts depends wholly upon the credence-weighted utility of the outcomes; utilities for 

 
53 As with act-independence, events will inherit their own form of outcome-independence from states. 
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states and for acts themselves don’t figure in the representation, which has a utility func-

tion defined only for the very limited set of propositions 𝒪. 

A number of authors have objected to the assumption of state neutrality (and by exten-

sion, context neutrality). (See, for instance, Karni, Schmeidler et al. 1983, Schervish, 

Seidenfeld et al. 1990, Bradley 2001.) I will not go over those complaints here; though I 

will note that if context neutrality is to be considered problematic, this can only be because 

it’s in tension with other parts of Savage’s system—context neutrality itself seems hardly 

problematic. Context neutrality forces outcomes to be rather fine-grained, and it’s be-

cause of this that the problem of constant acts exists (see also the discussion in §5.2.1). 

To use an example of James Dreier’s, 

 

I would rather have money as a gift from Boris than money stolen from Boris. The two 

outcomes must be distinguished. No one could plausibly accuse me of having intransitive 

preferences on the grounds that I preferred $100 as a gift from Boris to $5 as a gift from 

Boris, and $5 as a gift from Boris to $100 stolen from Boris. (1996, 257) 

 

Here, Dreier is highlighting the distinction between characterising outcomes in a coarse-

grained way, 

 

o = obtain $100 from Boris 

 

And characterising them in a relatively fine-grained way, 

 

o1 = obtain $100 as a gift from Boris 

o2 = obtain $100 stolen from Boris 

 

Most would value o1 over o2. However, an act whose outcome could be coarsely described 

as simply o may actually have outcomes manifest in particular as either o1 or o2, depend-

ing on the state of the world in which it’s performed. Likewise, two distinct acts which 

both result in o given at a particular state may, more specifically, result in o1 on the one 

hand or o2 on the other. As the example highlights, the coarse-grained description of out-

comes does not sit well with the presumption of context neutrality: the value of an out-

come depends on the context in which it obtains; the more that context is built into the 

outcome, the less its value depends on outside factors. The idea here obviously extends 

beyond this rather simple example, suggesting that context neutrality is plausible only 

insofar as the outcomes in 𝒪 are specified in rather great detail. Of course, given outcome-

functionality, context neutrality then implies that 𝒮 must be correspondingly fine-grained. 

The following summarises the essential points to keep in mind for the critique which 

follows: 
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(1) 𝒜’ = {α, β, γ, …} is a set of mutually exclusive acts, including all of the acts available to 

the agent in her present decision situation. Every act should be such that the decision-

maker is certain that she would perform the act, if she were to so choose. It’s assumed 

that agents have no intrinsic preferences between acts. 

(2) 𝒪 = {o1, o2, o3, …} is a set of outcomes; that is, a set of mutually exclusive and jointly 

exhaustive propositions about the consequences of performing an act at a state. For Sav-

age’s system to have a plausible interpretation qua decision theory, then the outcomes in 

𝒪 must be context-neutral and thus fine-grained, and they cannot imply that a particular 

act was chosen or that a particular state obtains. 

(3) 𝒮 = {s1, s2, s3, …} is a set of states; that is, a set of mutually exclusive and jointly exhaus-

tive propositions. For Savage’s system to have a plausible interpretation qua decision 

theory, the states in 𝒮 must be act-independent in either the causal or evidential sense, 

and therefore logically independent of what acts are performed; they must also be out-

come-functional. Together with the assumption that 𝒜 = 𝒪𝒮, the foregoing implies that 

states are outcome-independent. 

(4) ℰ = {E1, E2, E3, …} is a set of events; that is, (effectively) a set of propositions equivalent 

to disjunctions of states. Events inherit act-independence and outcome-independence 

properties from states. 

(5) 𝒜 = {ℱ, 𝒢, ℋ, …} is the set of all act-functions; that is, the set of all functions from 𝒮 to 

𝒪. Such functions are intended to represent acts in 𝒜’, by specifying the act’s outcomes 

under different states. 

(6) ≽ is primitively defined on 𝒜, and given a choice-based behavioural interpretation.  

5.1.2 Savage’s theorem 

With all this in mind, we can now outline Savage’s theorem and the structure of its proof. 

The theorem has seven preference conditions in the original formulation, though I will 

follow Joyce (1999) in explicitly listing the purely structural assumption that Savage 

needs to make about 𝒜: 

 

SAV0  𝒜 = 𝒪𝒮 

 

It’s possible to weaken SAV0 (and drop Savage’s seventh preference axiom, SAV7) if 

we only desire the representation to hold for finitely-valued act-functions. In what 

follows, let ℱE refer to the restriction of ℱ to E. (Thus oE is the restriction of o to E.) 

Furthermore, the mixture of ℱ and 𝒢, ℱE ∪ 𝒢¬E, is an act-function ℋ such that ℋ(s) = 

ℱ(s) for all s ∈ E, and ℋ(s) = 𝒢(s) for all s ∉ E. We can now state the weakened act-

richness assumption as follows: 
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SAV0’  𝒜 is the set of all finite-valued functions from 𝒮 to 𝒪; i.e., for any outcome o ∈ 

𝒪, o ∈ 𝒜, and for all ℱ, 𝒢 ∈ 𝒜, and any E ∈ ℰ, ℱE ∪ 𝒢¬E ∈ 𝒜 

 

SAV0’ says that 𝒜 contains not only all constant act-functions, but also all act-functions 

that can be constructed therefrom via a finite number of mixings. Note that, although 𝒪 

may contain an infinite number of outcomes, each act-function in 𝒜 is only ever associ-

ated with a finite number of outcomes. 

The first two real preference conditions are straightforward weak ordering and non-

triviality requirements on ≽: 

 

SAV1 ≽ on 𝒜 is a weak ordering 

SAV2  oi ≻ oj for some oi, oj ∈ 𝒪 

 

The transitivity of ≽ is an obvious necessary condition for the kind of T-representation 

that Savage aims to achieve, whereas the completeness of ≽ is required for Savage’s 

strong uniqueness result (amongst other things). SAV2 is a simple non-triviality 

condition. 

The remaining preference conditions require a bit of work to spell out. We first extend 

≽ to restricted act-functions: 

 

Definition 5.9: ≽ for restricted act-functions 

ℱE ≽ 𝒢E iff ℱ* ≽ 𝒢* whenever ℱE = ℱ*E, 𝒢E = 𝒢*E, and ℱ*¬E = 𝒢*¬E 

 

Furthermore, define the set of null events, 𝒩, as: 

 

Definition 5.10: Null events 

𝒩 = {E ∈ ℰ: ℱ ∼ 𝒢 whenever ℱ¬E = 𝒢¬E} 

 

The members of 𝒩 are the events which will receive a ℬel value of 0 in the final repre-

sentation. Again, the idea behind this is highly intuitive: if any two act-functions are con-

sidered equivalent for the purposes of decision-making whenever they only differ in their 

outcomes with respect to states s ∈ E for some event E, then what happens in those states 

must be considered utterly irrelevant from the point of view of the decision-maker. As-

suming basic rationality, this would come to pass just in case the subject had zero confi-

dence in one of those states obtaining. The background assumption, of course, is that 
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agents have no interest the outcomes of their acts at states they consider utterly unlikely 

to be true.54 

Savage’s next two preference conditions express his so-called sure-thing principle. 

For all ℱ, 𝒢, ℱ*, 𝒢* ∈ 𝒜, E ∈ ℰ, and o1, o2 ∈ 𝒪, 

 

SAV3 If ℱE = 𝒢E, ℱ*E = 𝒢*E, ℱ¬E = ℱ*¬E, and 𝒢¬E = 𝒢*¬E, then ℱ ≻ ℱ* iff 𝒢 ≻ 𝒢* 

SAV4  If E ∈ ℰ – 𝒩, then oE ≻ o*E iff o ≻ o* 

 

Savage’s famous example of his principle goes as follows: 

 

A businessman contemplates buying a certain piece of property. He considers the out-

come of the next presidential election relevant. So, to clarify the matter to himself, he 

asks whether he would buy if he knew that the Democratic candidate were going to win, 

and decides that he would. Similarly, he considers whether he would buy if he knew that 

the Republican candidate were going to win, and again finds that he would. Seeing that 

he would buy in either event, he decides that he should buy, even though he does not 

know which event obtains, or will obtain, as we would ordinarily say. It is all too seldom 

that a decision can be arrived at on the basis of this principle, but except possibly for the 

assumption of simple ordering, I know of no other extralogical principle governing deci-

sions that finds such ready acceptance. (1954, 21-2) 

 

More specifically, SAV3 says that whether ≽ holds between two act-functions does not 

depend on those states which have identical consequences for the two acts. This seems 

plausible for any rational agent, given the assumption that the states are act-independent. 

SAV4, on the other hand, sets up a correspondence between outcome preferences (i.e., 

preferences over constant act-functions) and restricted act-function preferences for non-

null events. 

The next condition is especially important for the sensibility of Coherence. Say that 

ℱE ≡ o iff ℱE(s) = o for all s in E. Then, for all relevant acts and events, 

 

SAV5  If o1 ≻ o2, ℱE ≡ o1, ℱ¬E ≡ o2, 𝒢E* ≡ o1, 𝒢¬E* ≡ o2, and similarly for o+
1, o+

2, ℱ+, 𝒢+, 

then ℱ ≻ 𝒢 iff ℱ+ ≻ 𝒢+ 

 

This condition, in conjunction with Coherence, ensures that ≽b is a weak ordering on ℰ. 

To recall, Coherence tells us that a subject finds E1 strictly more probable than E2 just in 

case, for any pair of outcomes o1 and o2, whenever she prefers o1 to o2, she prefers the 

act-function (E1, o1│¬E1, o2) over (E2, o1│¬E2, o2). We interpret this as the one act having 

 
54 I will not delve into the plausibility of this assumption here, though I will note that it is not obviously 

true. See (Bradley and Stefansson forthcoming) for related discussion. 
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a higher subjective likelihood of resulting in the better outcome, and a lower likelihood 

of resulting in the worse outcome. SAV5 says that any time a subject prefers (E1, o1│¬E1, 

o2) to (E2, o1│¬E2, o2) for some o1, o2 such that o1 ≻ o2, then for all pairs of outcomes o3, 

o4 such that o3 ≻ o4, the agent will prefer (E1, o3│¬E1, o4) to (E2, o3│¬E2, o4). In light of 

how we are interpreting the agent’s behaviour, SAV5 can be read as a basic condition of 

coherent decision-making upon an agent: if, in one instance, she is disposed to choose as 

if she considers E1 more likely than E2, then she ought to choose as such in all instances. 

Without this condition, a subject’s preferences may fail to determine any well-defined 

qualitative probability relation at all, rendering Coherence effectively useless.  

Savage’s final two preference conditions are that, for all ℱ, 𝒢 ∈ 𝒜 and E ∈ ℰ, 

 

SAV6  If ℱ ≻ 𝒢 then there is a finite partition T of 𝒮 such that for all E ∈ T, ℱ*E ≡ o1 and 

ℱ*¬E = ℱ¬E only if ℱ* ≻ 𝒢; and 𝒢*E ≡ o1 and 𝒢*¬E = ℱ*¬E only if ℱ ≻ 𝒢*  

SAV7  If ℋE ≡ 𝒢(s), then ℱE ≻ ℋE only if ℱE ≽ 𝒢E; and ℋE ≻ ℱE only if 𝒢E ≽ ℱE 

 

SAV6 is a very strong structural condition which in effect requires that no outcome is 

either infinitely desirable or infinitely undesirable. In conjunction with the other prefer-

ence conditions, it plays an important role in the derivation of a probability function ℬel 

that represents ≽b. SAV7 is also very strong, but as noted above, it’s not required if we 

limit our attention to finitely-valued act-functions. 

With these conditions set out, Savage proves the following theorem: 

 

Theorem 5.1: Savage’s theorem 

If SAV0–SAV7 hold of <𝒮, ℰ, 𝒩, 𝒪, 𝒜, ≽>, then there is a probability function ℬel: ℰ ↦ 

[0, 1], and a function 𝒟es: 𝒪 ↦ ℝ, such that for all o1, o2 ∈ 𝒪, all E, E1, E2 ∈ ℰ, and all (Ei, 

oi│...│En, on), (Ej, oj│...│Em, om) ∈ 𝒜, 

(i) o1 ≽ o2 iff 𝒟es(o1) ≥ 𝒟es(o2) 

(ii) E1 ≽b E2 iff ℬel(E1) ≥ ℬel(E2) 

(iii) If 0 < λ < 1, then ℬel(E1) = λ.ℬel(E), for some E1 ⊆ E 

(iv) (Ei, oi│...│En, on) ≽ (Ej, oj│...│Em, om) iff ∑  𝑛
𝑖 ℬel(Ei).𝒟es(oi) ≥ ∑  𝑚

𝑗  

ℬel(Ej).𝒟es(oj) 

Furthermore, ℬel is unique and 𝒟es is bounded and unique up to positive linear transfor-

mation 

 

A thorough statement of the proof of Theorem 5.1 can be found in (Fishburn 1970, Ch. 

14). 

The strong statement of Savage’s uniqueness condition, while technically accurate, is 

somewhat misleading. Savage does prove that, given a choice of 𝒪 and 𝒮, if SAV0–SAV7 

are satisfied then ≽ can be given an expected utility representation where ℬel on ℰ is 
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unique and 𝒟es on 𝒪 is unique up to positive linear transformation. The strength of this 

uniqueness condition is often considered a substantial point in favour of Savage’s theo-

rem. It’s prima facie valuable to have a theorem which supplies us with a unique credence 

function. The problem here is that both ℬel and 𝒟es have their uniqueness conditions 

only relative to the choice of 𝒮 and 𝒪. This much is obvious for 𝒟es, as it is a function 

defined on 𝒪 and so necessarily changes its character whenever 𝒪 is altered. But as 

Schervish, Seidenfeld et al. (1990) show, the character of ℬel is also strongly dependent 

not only on how 𝒮 (and hence ℰ) is specified, but also on how 𝒪 is specified: if it turns 

out that there are multiple, equally viable ways of characterising the space of states and 

outcomes, then Savage’s strong uniqueness results are to some extent illusory (see also 

Levi 2000, 399). 

A huge number of decision-theoretic representation theorems are formulated within a 

framework very similar to Savage’s own. As Krantz et al. put it in their monumental 

Foundations of Measurement, 

 

In general, a rough sort of consensus exists about the primitive terms to be employed in the 

formulation of the problem of decision making under risk or uncertainty. Nearly everyone 

seems to agree that there are chance events to which probabilities adhere, consequences 

which exhibit utilities, and decisions that are more or less arbitrary associations of conse-

quences to events. (1971, 411) 

 

That is to say, a great many representation theorems (then and today) begin with 𝒮 and 𝒪, 

and define ≽ on a collection 𝒜 of act-functions. Most theorists working within the para-

digm Savage created define 𝒜 as the set of all total functions from 𝒮 to 𝒪. Others have 

taken ≽ to be defined on only a proper subset of 𝒪𝒮 (e.g., Richter 1975, Wakker and Zank 

1999, Casadesus-Masanell, Klibanoff et al. 2000), or on partial functions from 𝒮 to 𝒪 

(e.g., Luce and Krantz 1971, Luce 1972, Roberts 1974, Narens 1976).55 

Importantly, these theorems include not only those for classical expected utility theory, 

but a very wide range of non-expected utility theories as well. Indeed, the vast majority 

of NCU theorems belong to the Savage paradigm. In Appendix B, I outline four distinct 

NCU theorems formulated using Savage’s formal framework, though these four only 

scratch the surface. Savage’s own theorem, as a CEU theorem, is limited to probabilistic 

ℬel functions. On the other hand, the huge variety of representation styles that can and 

have been arrived at through the use of Savage’s framework—many of which allow for 

 
55 Suppes (1969) and Fishburn (1967) diverge from the general trend by characterising their basic ob-

jects of preference as ordered pairs of Savage-style act-functions (i.e., the option space is a subset of 

𝒪𝒮×𝒪𝒮), which are supposed to represent even-chance bets with the performances of different acts as prizes. 

The theorem of (Kochov 2015) has a rather unique formal structure, but its basic relata for ≽ can be accu-

rately described as “multiperiod counterparts of Savage act[-function]s” (240). 



 

103 

 

non-probabilistic ℬel functions—should be encouraging to proponents of characterisa-

tional representationism. Unfortunately, though, there are a number of issues that arise 

from the use of the framework itself, to which we now turn. 

5.2 Constant act-functions and imaginary acts 

I will begin my critical discussion with what is easily the most frequently cited objection 

to Savage’s system, which Fishburn (1981) calls the constant acts problem: it’s implau-

sible that constant act-functions can serve to represent anything that an ordinary agent 

could choose to do. If 𝒜 is supposed to represent the space of acts available to the agent 

in her current situation, then constant act-functions are an anomaly—functions which rep-

resent nothing in the real world that the agent could have preferences between. 

Fishburn (1981) gives the following illustration of the problem. Let the outcome o be 

Carrying an umbrella on a bright and sunny day, and the event E be It rains. Then, every 

s in E is a state in which it rains, and any act-function which maps an s in E to o is pairing 

an outcome with a state that is inconsistent with it. “In fact, the natural set of [outcomes] 

that could occur under one state may be disjoint from the set that could occur under an-

other state” (1981, 162). Note that, on this way of describing the issue, the problem ap-

pears to be that constant act-functions may pair outcomes with incompatible states, thus 

apparently representing acts which are literally impossible to perform.56 If s and o are 

logically inconsistent, then not even an omnipotent god could make it the case that s and 

o. Suppes and Luce (1965, 299), Karni (1993), and Maher (1993, 182-5) give a similar 

account of the constant acts problem as involving inconsistent state and outcome pair-

ings.57 

However, the issues here are somewhat more subtle than they are often made out to 

be. Constant act-functions do give rise to difficulties for characterisational representa-

tionism, but exactly what these difficulties may be depends on how we interpret the rele-

vant formalisms. Let us therefore look again in depth at the origins of the constant acts 

problem, before we turn to how the problem might be dealt with. 

 
56 Indeed, if we make our outcomes so fine-grained that each outcome entails a conjunction of the form 

(s obtains and α was performed), as some are wont to do, then every finite-valued act-function in Savage’s 

system will pair at least one outcome with an incompatible state. 

57 Joyce (1999, 107-8) also supposes that SAV0 implies the existence of act-functions which pair to-

gether incompatible states and outcomes, but interprets the constant acts problem as arising primarily from 

the conjunction of the completeness requirement (entailed by SAV1) and SAV0. This is because he drops 

the behavioural interpretation of ≽ for another interpretation compatible with preferences over non-existent 

acts. See §5.2.3. 
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5.2.1 The basis of the problem 

The complaint about constant act-functions is usually levelled at SAV0, or its weaker 

counterpart SAV0’, wherein the character of 𝒜 is formally specified. However, we must 

be careful not to lay all the blame on Savage’s act-richness assumption—it is part of the 

problem, of course, but it’s not the whole story. In fact, there are three independent factors 

which together lead to the constant acts problem, as I will now argue. 

If taken purely on their own, SAV0 and SAV0’ are hardly problematic—each merely 

characterises 𝒜 as a subset of 𝒪𝒮. What SAV0/SAV0’ can be taken to require in context 

therefore depends on how the states in 𝒮 are characterised, how the outcomes in 𝒪 are 

characterised, and what the act-functions in 𝒜 are intended to represent. Let us begin the 

interpretation of 𝒜. As in §5.1.1, we will assume that every act-function is assumed to 

correspond to something an agent might do. Let us call this the Act–Function Correspond-

ence assumption, which can be stated as follows: 

 

Act–Function Correspondence 

There exists a natural, one-one correspondence between the set of act-functions 𝒜 ⊆ 𝒪𝒮 

and the space of available acts 𝒜’ such that every (E1, o1│…│En, on) ∈ 𝒜 represents a 

unique act (or set of acts with the same pattern of consequences) in A’ which, if performed, 

would result in o1, if any s ∈ E1 were the case, …, and on if any s ∈ En were the case 

 

As we’ve seen, Act–Function Correspondence requires that states are at least logically 

act-independent, and outcome-functional; if states did not have these properties, the rep-

resentation of acts using act-functions would make little sense. 

SAV0/SAV0’ and Act–Function Correspondence are not yet enough to get us a prob-

lem—we still need to specify the nature of the outcomes. To see this, note that it’s con-

sistent with Savage’s formalism that the outcomes in 𝒪 are very coarse-grained. Suppose, 

then, that 𝒪 contains only two extremely non-specific outcomes, o1 and o2. For instance, 

let o1 and o2 be very long, mutually exclusive disjunctions of the more specific states of 

affairs that we would ordinarily consider the outcomes of a decision to be. In this case, 

there does not appear to be anything unusual about constant act-functions: o1 and o2 could 

be construed simply as acts (or a collection of acts) which result in one or another disjunct 

becoming true—and such ‘acts’ are ubiquitous. The problem with this, of course, is that 

characterising 𝒪 this way conflicts with the informal requirement of context neutrality—

without which Savage’s preference conditions and his principle of Coherence become 

highly implausible. For similar reasons, we can assume that any useful representation of 

acts as functions from 𝒮 to 𝒪 should make use of rather fine-grained outcomes. 

We now have enough for the constant acts problem to arise. Generally speaking, there 

is a deep tension within Savage’s system between the following triad: 
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(1) SAV0/SAV0’ 

(2) Act–Function Correspondence 

(3) Fine-grained outcomes 

 

A theorist could reasonably pick any two of these to adopt, but trying to justify all three 

at once is difficult. Let us assume (3) in all that follows. In this case, the constant acts 

problem becomes clear: SAV0/SAV0’ implies that 𝒜 has a particular kind of formal 

structure; Act–Function Correspondence in turn requires that 𝒜’ must have the same 

structure. The existence of constant act-functions in 𝒜, however, seems incompatible 

with Act–Function Correspondence. One of these needs to go. 

There are two lessons that I wish to draw here. The first is that it is slightly misleading 

to express the problem as being about the compatibility of some states and outcomes. 

There would still be cause to worry about Act–Function Correspondence even if there 

were no mutually incompatible pairs of states and outcomes, and the problematic act-

functions are by no means limited only to those which pair together incompatible states 

and outcomes. On any natural conception of acts and outcomes, immensely implausible 

that there is an act we can perform such that, regardless of how the world turns out to be 

independently of our decision, one and only one fine-grained outcome will obtain. Now, 

this may be because the set of potential outcomes 𝒪1, 𝒪2 ⊆ 𝒪 that may result from any 

available act at two distinct states s1 and s2 respectively only partially overlap, if they 

overlap at all—indeed, this would seem to be the so in any ordinary case: some states just 

don’t play nicely with some outcomes. However, even supposing that every state is con-

sistent with the same range of outcomes, there would still be no good reason to think that 

𝒜’ has the kind of structure imposed upon it by the conjunction of SAV0/SAV0’ and 

Act–Function Correspondence. Which outcomes can arise in which states depends on the 

range of acts available to the agent at the time of the decision, and SAV0/SAV0’ places 

rather implausible constraints on what that range of acts must always look like. The prob-

lem, therefore, is not simply that: 

 

In virtually any realistic problem that is formulated in the Savage mode, some conse-

quences will be incompatible with some states or events, as is “carry an umbrella on a 

bright, sunny day” with “rain”. (Fishburn 1981, 162) 

 

Rather, the problem is the unjustified and implausible imposition of a particular structure 

upon 𝒜’.58 

 
58 In Fishburn’s example, It rains is an event—but given an outcome set 𝒪 that includes Carrying an 

umbrella on a bright and sunny day, there cannot be any such event in ℰ. As noted in §5.1.1, states must 

be act-independent, outcome-functional, and thus, in light of SAV0/SAV0’ and Act–Function Correspond-

ence, events must be outcome-independent. Of course, rain could still occur—the point is that there can be 
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The second thing to note is that constant act-functions are only a very small part of a 

broader problem. For example, essentially the same worries that arise for constant act-

functions can be raised for what we might call bifurcating act-functions, or act-functions 

of the form (E, o1│¬E, o2); and likewise for trifurcating act-functions (E1, o1│E2, o2│E3, 

o3), and so on. Most (if not all) act-functions which range over only a small number of 

distinct finely-individuated outcomes will be just as problematic as constant act-func-

tions, and for essentially the same reasons. I will refer to any act-function which lacks a 

corresponding act in 𝒜’ as an imaginary act-function.59 Any imaginary act-function 

causes as much trouble for Savage as a constant act-function does—the constant functions 

are simply the most salient example of the underlying issue. 

If one wants to avoid the bigger issues at the heart of the constant acts problem, it is 

clear that one must do much more than just remove constant act-functions from 𝒜. The 

presence of imaginary act-functions in 𝒜 is problematic inasmuch as 𝒜 is supposed to 

represent 𝒜’. This leaves us with two options. On the one hand, one might retain Act–

Function Correspondence and try to develop a theorem around a more realistic represen-

tation of 𝒜’. On the other hand, one could drop Act–Function Correspondence, offering 

instead an alternative interpretation of the system which somehow makes sense of imag-

inary act-functions. In the remainder of this section, I will consider the viability of each 

of these options in turn. 

5.2.2 Doing without imaginary act-functions 

Given Act–Function Correspondence, SAV0 and even the weaker SAV0’ are clearly too 

strong. For characterisational representationism, this will not do. The problem here is not 

just that ordinary agents could not have preferences satisfying the conditions, but rather 

that it would not even make sense to assert of anyone that their preferences satisfy the 

conditions. To say that these act-richness assumptions are false is to say that ≽ is formally 

required to have a domain which it does not, and in fact cannot, have (and thus brings the 

theorem into conflict with desideratum (1a)). 

Some have thought to respond to the problem of constant acts by weakening those act-

richness assumptions. As noted earlier, Luce and Krantz (1971) were able to obtain a 

 
no event in ℰ which corresponds to that proposition if Carrying an umbrella on a bright and sunny day 

already exists in 𝒪. To apply Savage’s system, we are not free to pick and choose as we like our states, 

outcomes, and events, but must do so within tightly constrained limits. As I will argue below, this fact itself 

leads to further problems with Savage’s framework. 

59 Maher (1993, 183) refers to these as uninterpretable acts. 
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representation result without requiring the use of constant act-functions, which they con-

sider an important benefit of their approach.60 However, we have seen that simply remov-

ing constant act-functions from 𝒜 is inadequate as a response to the broader problem with 

imaginary act-functions. Luce and Krantz retain still very strong assumptions about the 

structure of their set of act-functions (see Appendix B), which by their own admission 

seem to imply the presence of imaginary act-functions. This is the basis of Joyce’s (1999, 

108-10) critique of Luce and Krantz’s theorem, and I will not add anything further to it 

here.61 

There is a general reason for this failure: like Savage, Luce and Krantz attempt to 

formally construct their set of act-functions 𝒜 using just 𝒮 and 𝒪 but independently of 

any knowledge or specifications regarding the space of available acts 𝒜’. It is unreason-

able to begin with an arbitrary partition 𝒮 and an equally arbitrary set of outcomes 𝒪, and 

expect to work backwards from there to arrive at a plausible reconstruction of the space 

of available acts. 𝒜’ may correspond to a proper subset of some collection of act-func-

tions (defined for some ways of construing 𝒮 and 𝒪), but the formal character of this 

subset will depend heavily on the nature of 𝒜’ itself. There may, for instance, be one 

available act (E, o1│¬E, o2) but no (E, o2│¬E, o1), or vice versa—but there is no way to 

know this, if all that is given is 𝒮 and 𝒪. If Act–Function Correspondence is ever to be 

justified, the formal construction of the space of act-functions needs to begin with 𝒜’.62 

On the flip side, however, as I will now argue, it is very difficult (if not impossible) to 

develop a Savage-like representation theorem without making some rather strong, and 

ultimately implausible, assumptions about 𝒜. There are multiple reasons for this, though 

in what follows I will focus upon what appears to me the most troubling: the difficulty in 

developing well-defined orderings on ℰ and 𝒪, needed to construct ℬel and 𝒟es respec-

tively, without an appeal to imaginary act-functions. 

Fishburn has argued that, without appealing to constant act-functions, “there is no nat-

ural way of defining preferences on [outcomes] in terms of preferences on acts” (1970, 

 
60 See also (Gaifman and Liu 2015) for a recent attempt at minimising—but not altogether removing—

the use of constant act-functions within a Savagean framework. Gaifman and Liu’s theorem requires that 

there are at least two constant act-functions. Although much weaker than SAV0, it’s not at all clear that 

their replacement condition (or the more general assumptions they need to make about the structure of their 

set of act-functions) is consistent with Act–Function Correspondence. 

61 A further problem with Luce and Krantz’s formalisation is that many of their act-functions are very 

difficult to interpret as acts. See (Krantz and Luce 1974), (Spohn 1977), and (Fishburn 1981) for discussion. 

62 I am unaware of any Savage-like theorems which take the path I am suggesting, though it is briefly 

discussed by Fishburn (1970, 164-7). Balch and Fishburn (1974, see also Balch 1974, Fishburn 1974) de-

velop a theorem which begins with a primitive set of acts 𝒜’ and a set of act-independent states 𝒮, with 

outcomes defined as act-event pairs. Their theorem belongs to the class of lottery-based theorems, which 

are discussed below.  



 

108 

 

166). In Savage’s system, however, preferences over constant act-functions form a crucial 

part of constructing the 𝒟es function—recall that, in his representation, 

 

o1 ≽ o2 iff 𝒟es(o1) ≥ 𝒟es(o2) 

 

Thus, Fishburn suggests that to do without constant act-functions, a theorist would need 

to develop a dual-primitive theorem, with ≽ defined on 𝒜 and a separate preference re-

lation ≽u defined on 𝒪. As it turns out, though, with some imagination it is possible to 

characterise relative utilities between outcomes in terms of preferences between act-func-

tions without appealing to constant act-functions at all. It will be instructive to see why 

this alternative characterisation still seems to end up requiring an appeal to imaginary act-

functions. 

The basic idea here is dominance reasoning: an outcome o1 is more desirable than 

another outcome o2 for an agent S iff ℱ ≻ 𝒢, when ℱ and 𝒢 only differ, with respect to the 

states that S gives some credence to, in that ℱ is sometimes paired with o1 at some states 

while 𝒢 is paired with o2 at those same states. In this case, with respect to what the agent 

considers possible, ℱ represents an act which is identical to the act represented by 𝒢 but 

for the possibility of resulting in o1 instead of o2 at some states—and if ℱ ≻ 𝒢, this is 

presumably then because o1 is preferred to o2. 

In order to spell this idea out formally, we will first need a notion of nullity for states. 

As a consequence of Definition 5.10, any subset of a null event is also null, including any 

singleton events {s}, for s ∈ E ∈ 𝒩. Given this, say that a state is null iff it belongs to an 

event E and E is null in the sense of Definition 5.10; the state is non-null otherwise. Now 

let 𝒮’ ⊂ 𝒮 be a set of non-null states. We can now define a relative utility ranking ≽u as 

follows: 

 

Definition 5.11: ≽u without constant acts 

o1 ≽u o2 iff ℱ≽𝒢 whenever, for some set of non-null states 𝒮’, 

(i)  If s ∈ 𝒮’, then ℱ(s) = o1 and 𝒢(s) = o2 

(ii)  For all non-null s ∉ 𝒮’, ℱ(s) = 𝒢(s) 

 

Assuming that outcomes are context neutral, the right-to-left direction of Definition 5.11 

seems plausible for any rational agent—the dominance principle it embodies is one of the 

most intuitive precepts of folk decision theory. Furthermore, this definition does away 

with any need for constant act-functions. 

However, there seems to be no good reason to think that the space of available acts 

will have the structure required for the general applicability of Definition 5.11. There are 
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two distinct issues here.63 The first arises as a result of the appeal to Definition 5.10 in 

the definition of null states. As almost any event in ℰ can be null, and because we cannot 

presume to know a priori what events the agent considers null or non-null, the general 

application of Definition 5.10 already imposes quite strong restrictions upon the character 

of 𝒜. That is, for any potentially null event E, Definition 5.10 requires that we will be 

able to find at least two act-functions which differ for some state(s) in E but which are 

identical with respect to all states in ¬E. There is no good reason to suppose that such acts 

will always be available.  

Now, perhaps this first issue could be solved using another definition of nullity; or, 

alternatively, we might even assume that 𝒩 is given to us for free as a primitive. This 

will not be enough, because a closely related issue arises for Definition 5.11 itself. In 

particular, in order to ensure that the left-to-right direction always holds for any potential 

subject S, it will need to be the case that for every way of dividing the null states from the 

non-null there must be act-functions ℱ and 𝒢 which satisfy the stated conditions (i) and 

(ii) with respect to the relevant outcomes. This is still too strong an assumption, and there 

is no guarantee that the space of available acts will play along. An obvious example for 

when Definition 5.11 cannot be applied (but certainly not the only one) is the case of a 

fatalist who is certain that whatever outcome may eventually obtain, it will obtain 

regardless of her choices. At every state, she believes, any of her acts will result in the 

same outcome, whatever that outcome may be. The fatalist prefers some outcomes over 

others, and is uncertain about which outcome will obtain, but there will be no acts 

available to her which have different outcomes at any states she gives credence to; hence, 

any act-function which satisfies (i) is imaginary. 

Suppose, then, that both 𝒩 and ≽u are given as primitives, not defined in terms of 

preferences on act-functions. There is now the problem of defining ≽b, needed to 

construct the ℬel function, without making undue assumptions about the character of 𝒜’. 

Savage’s principle of Coherence appeals to bifurcate act-functions, which are usually no 

more plausible qua representations of available acts than constant act-functions. So, an 

alternative definition for ≽b will need to be found as well. 

Machina and Schmeidler (1992) present a somewhat more plausible definition of ≽b 

within an essentially Savagean framework, as follows: 

 

Definition 5.12: ≽b (Machina and Schmeidler) 

E1 ≽b E2 iff, if o1 ≻u o2, then ℱ ≽ 𝒢 whenever: 

(i)  If s ∈ E1 – E2, then ℱ(s) = o1 and 𝒢(s) = o2 

(ii)  If s ∈ E2 – E1, then ℱ(s) = o2 and 𝒢(s) = o1  

(iii)  If s ∉ (E1 – E2) ∪ (E2 – E1), then ℱ(s) = 𝒢(s) 

 
63 To focus in on the main problem, I will assume for now that ≽ is complete on 𝒜; in §5.2.4 I will 

discuss what can be said when that assumption is false. 
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The reasoning behind Definition 5.12 is very similar to the reasoning behind Coherence. 

Indeed, the two definitions amount to the same thing in the special case where E2 = ¬E1. 

If ℱ and 𝒢 satisfy the stated conditions, then the agent would prefer ℱ to 𝒢 iff she found 

E1 more likely than E2, as ℱ has the greater subjective likelihood of resulting in the better 

outcome. The major benefit of Machina and Schmeidler’s definition is that it does not 

make use of bifurcate act-functions—in fact, ℱ and 𝒢 may have any number of outcomes. 

Unfortunately, Machina and Schmeidler’s alternative still imposes strong constraints on 

the space of available acts. Before I argue this, however, I will note that it’s possible to 

improve upon their definition in at least three ways. 

To begin with, the reasoning which underlies the definition does not require something 

as strong as condition (ii), which makes mention of the same outcomes as appeared in 

condition (i). It would be enough that the second condition appeals to outcomes with the 

same utilities as those mentioned in (i); and since we have taken ≽u as a primitive we can 

replace (ii) with: 

 

(ii’) If s ∈ E2 – E1, then ℱ(s) = o4 and 𝒢(s) = o3, where o3 ∼u o1, and o4 ∼u o2 

 

The outcome o3 may or may not be identical to o1, and similarly for o2 and o4, so (ii’) is 

a strictly weaker condition than (ii). The second improvement is similar: with respect to 

condition (iii), sameness of outcomes is unnecessary—sameness of utility would be 

enough. (Strictly, it would be enough that the credence-weighted average of the outcomes 

under the states s ∉ (E1 ∪ E2) is equal for ℱ and 𝒢, but there is no obvious way to specify 

such a condition prior to deriving the credence function.) Thus we can replace (iii) with: 

 

(iii’) If s ∉ (E1 – E2) ∪ (E2 – E1), then ℱ(s) ∼u 𝒢(s) 

 

Finally, it’s possible to weaken the definition’s requirements on 𝒜 if all null events are 

discounted from consideration. Definition 5.12 applies to all pairs of events E1 and E2, 

and so act-functions must be found which satisfy the definitions three conditions with 

respect to any pair E1 and E2. However, null events can be presumed to sit at the bottom 

of the ≽b ranking (to be assigned a credence of 0), so we don’t need to consider prefer-

ences over act-functions to decide where they sit with respect to ≽b. 

The foregoing then leads to the following, improved definition of ≽b: 

 

Definition 5.13: ≽b (Machina and Schmeidler improved) 

If E ∈ 𝒩, then for all E’ ∈ ℰ, E’ ≽b E; and for all E1, E2 ∈ ℰ – 𝒩, E1 ≽b E2 iff, if o1 ≻u o2, 

then ℱ ≽ 𝒢 whenever 

(i)  If s ∈ E1 – E2, then ℱ(s) = o1 and 𝒢(s) = o2 

(ii’) If s ∈ E2 – E1, then ℱ(s) = o4 and 𝒢(s) = o3, where o3 ∼u o1, and o4 ∼u o2 
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(iii’) If s ∉ (E1 – E2) ∪ (E2 – E1), then ℱ(s) ∼u 𝒢(s) 

 

The justification for Definition 5.13 is essentially identical to the justifications for Defi-

nition 5.12 and Coherence, but it places strictly weaker requirements on the structure of 

𝒜 than either of the latter two definitions. 

It will come as no surprise that Definition 5.13 is still too strong. To ensure that ≽b is 

always well-defined, it must be assumed that there will always be some ℱ and 𝒢 satisfying 

the conditions (i), (ii’), and (iii’), for any pair of non-null events E1 and E2 that we care 

to choose. And there are good reasons to think that this will not always be the case. Here 

is a schematic example.64 Let E1 be an event where, independently of any acts I might 

perform, many very good things occur, and let E2 be an event where a great deal of very 

horrible things occur independently of any act I might perform. For simplicity, suppose 

that E1 and E2 are disjoint events. In fact, suppose that E1 is so much better than E2 that 

the very best possible outcome that might obtain if E2 were true would still be worse than 

the very worst outcome that might obtain given E1. If this is the case, however, then any 

act-function which satisfies (i) and (ii’) cannot represent an available act: there are no 

acts α and β, for instance, such that α leads to o1 at E1, and β leads to o3∼o1 at E2. Accord-

ing to Definition 5.13 then, E1 and E2 are incomparable with respect to ≽b. 

A final illustration of the difficulties that come with trying to remove imaginary act-

functions should suffice. As it turns out, there does appear to be a way to systematically 

construct a set of act-functions from a set of states and outcomes so as to guarantee act-

independence, outcome-functionality, and Act–Function Correspondence. The strategy is 

based on a discussion of Lewis’ (1981); Gibbard and Harper (1978) and Stalnaker (1972) 

also refer to a closely related idea, and it’s critically discussed by Joyce (1999, 115-19). 

First of all, take 𝒜’—that is, a set of acts rather than act-functions—and 𝒪 as primitive. 

It is assumed that the outcomes in 𝒪 are mutually exclusive and jointly exhaustive, con-

sistent with the performance of any act in 𝒜’, and context neutral. 𝒮 can now be defined 

as the set of all functions from 𝒜’ to 𝒪. 

For instance, suppose there are only two available acts, α and β, and only two possible 

outcomes, o1 and o2. Then 𝒮 contains four distinct functions: 

 

s1 = {(α, o1), (β, o1)} 

s2 = {(α, o1), (β, o2)} 

s3 = {(α, o2), (β, o1)} 

s4 = {(α, o2), (β, o2)} 

 

 
64 Thanks to Rachael Briggs for discussion here, and for help with this example. Exactly the same ex-

ample also shows that Definition 5.12 and Coherence cannot always be applied. 



 

112 

 

In Lewis’ terminology (1981, 11), each s ∈ 𝒮 can be taken to represent a dependency 

hypothesis; i.e., a conjunction of counterfactuals which describes one of the different pos-

sible ways that the outcomes in 𝒪 could causally depend upon the acts the agent might 

perform. For instance, s1 can be read as Regardless of what I do, o1 obtains, while s2 is If 

I do α, then o1 will result, but if I do β, then o2 will result. Every dependency hypothesis 

is then (causally and hence logically) act-independent and outcome-functional (but not 

outcome-independent). Furthermore, given our assumptions, the set of dependency hy-

potheses is a partition of the relevant logical space. 

With this in hand, each act in 𝒜’ can be paired directly with an act-function in 𝒜 ⊂ 

𝒪𝒮: 

 

α ≙ ℱ = {(s1, o1), (s2, o1), (s3, o2), (s4, o2)} 

β ≙ 𝒢 = {(s1, o1), (s2, o2), (s3, o1), (s4, o2)} 

 

The construction is such that there are never any constant act-functions. On the other 

hand, there will be constant states, or dependency hypotheses which imply that every act 

results in the same outcome. A consequence of these constant states is that the range of 

every act-function includes the entirety of 𝒪. Moreover (as evidenced in the given exam-

ple), act-functions will always evenly distribute the outcomes in 𝒪 amongst the states in 

𝒮. For example, if there are 3 outcomes and 4 available acts, and thus 34 = 81 states, each 

act-function will distribute each of the three outcomes to exactly 27 of those states. Thus, 

if there are more than 2 outcomes, we will never find bifurcating acts in 𝒜 either (which 

figure centrally in Coherence). 

Because 𝒜’ is taken as primitive, and 𝒜 is ultimately defined in terms of it, Act–

Function Correspondence can hardly be doubted on this picture—indeed it seems about 

as plausible as it possibly can be. However, it also evident that none of the suggested 

definitions of ≽u and ≽b discussed above will be adequate if we adopt this framework. 

The Lewisian set of act-functions 𝒜 has an interesting, and mathematically very elegant, 

structure to it—but it’s the wrong kind of structure to guarantee that 𝒩, ≽u, and ≽b will 

always, or even often, be defined if Coherence, Definition 5.10, Definition 5.11, and/or 

Definition 5.13 are adopted. For example, the existence of constant states is enough to 

ensure that the earlier example given against Definition 5.13 applies; and Definition 5.11 

cannot usefully be applied to any fatalist whose credence is distributed only over constant 

states. It may, of course, be possible to develop an interesting representation theorem 

based on this kind of construction—though I don’t see how—but whatever it may turn 

out to be like, it will be quite different in its construction of ℬel and 𝒟es than anything 

Savage or his followers have put forward. 

All of this suggests that it’s very difficult—at best—to construct a Savage-like repre-

sentation theorem without making some very strong assumptions about the set of act-

http://en.wikipedia.org/w/index.php?title=%E2%89%99&redirect=no
http://en.wikipedia.org/w/index.php?title=%E2%89%99&redirect=no
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functions, which seem implausible if Act–Function Correspondence is assumed. Savage’s 

definitions of ≽u and ≽b are obviously off the table, but so are nearby suggestions. This 

point is borne out by other representation theorems developed within the Savage para-

digm. These theorems typically require, if not constant acts, then at least a very richly 

structured 𝒜 involving some imaginary act-functions. It would be an interesting project 

to see whether any interesting result can be achieved using the dependency hypothesis 

framework, but for the purposes of this discussion the key point is that no such results 

have been discovered—nor is it obvious than any will be found. 

The presence of imaginary act-functions in 𝒜 and Act–Function Correspondence are 

jointly inconsistent. So far, I have considered removing imaginary act-functions from the 

picture. I have argued that it seems highly unlikely that a Savage-like representation the-

orem will be developed under which Act–Function Correspondence is plausible. Never-

theless, removing imaginary act-functions from 𝒜 is not the only possible response to the 

constant acts problem. Many authors working within the Savage paradigm are content to 

define ≽ over imaginary act-functions, and ipso facto reject Act–Function Correspond-

ence. It is to that response that I now turn. 

5.2.3 Imaginary acts and (im)possible patterns of outcomes 

Savage did not publish a response to the constant acts problem, though Fishburn (1981, 

162-3) reports that it “did not greatly bother Savage since he felt that the preference com-

parisons required by his axioms were conceptually reasonable”. Exactly what Fishburn 

meant by this is unclear, but many have taken it to mean that Savage was content to deal 

with preferences over imaginary acts—acts which, while not actually available for the 

agent to perform, could still in some sense or other be imagined.65 Others—perhaps even 

most who have applied the Savage framework—have expressed similar sentiments.66 

That is, the most common response to the constant acts problem is that it seems concep-

tually possible to imagine some act which gives rise to such-and-such outcomes depend-

ent on such-and-such states of the world obtaining, even if it’s granted that the outcomes 

might be inconsistent with the states. 

 
65 See, e.g., (Levi 2000, 398): “Savage’s approach does not require that the preference ranking over 

potential options be a preference ranking over actual options … There is textual evidence that Savage 

clearly understood this.” I think Levi is entirely right about this—in particular, if constant act-functions are 

understood as representing genuinely available acts, then decision theory becomes trivial: every agent ought 

to perform the constant act which results in the best possible outcome at any state (Joyce 1999). Since he 

obviously did not intend for his theory to be trivial, it’s plausible that Savage took some of his act-functions 

to represent imaginary acts. However, there is also textual evidence that Savage did not fully appreciate 

what this meant for his supposedly ‘behaviouristic’ definition of credences and utilities, and it conflicts 

sharply with how he introduces his decision theory in the early pages of his (1954). 

66 See (Buchak 2013, 91-2) for a recent example.  
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Unfortunately, it is very rare that much more is said on the issue beyond the bare as-

sertion that imaginary acts make sense and that we can have preferences over such things. 

This situation is unsatisfactory; as I have been stressing, the interpretation of any one 

element of Savage’s formalism is intimately tied up with the interpretation of every other 

element, and the introduction of imaginary acts into the intended interpretation of 𝒜 has 

important consequences elsewhere. Most importantly, the inclusion of imaginary acts is 

incompatible with Savage’s proposed interpretation of ≽: “Loosely speaking, [α] ≽ [β] 

means that, if [the subject] were required to decide between α and β, no other acts being 

available, he would decide on α”. It is hard to make sense of this behavioural interpreta-

tion as being even “loosely” adequate if α and/or β are imaginary acts, especially if they 

are acts which result in inconsistent state-outcome pairs. 

Preferences between imaginary acts call for a non-behavioural construal of ≽, and it’s 

evident in the literature that those who adopt imaginary acts as part of their interpretation 

of Savage’s act-functions forego the behavioural reading of ≽ in favour of a somewhat 

more mentalistic construal. Indeed, Broome (1991, 1993) refers to preferences over im-

aginary acts as non-practical preferences, as whatever preferences they represent cannot 

be manifest in agents’ dispositions to choose between available acts. And James Dreier 

describes the self-elicitation of non-practical preferences as follows: 

 

Asked whether I prefer [α] or [β], I imagine myself in a situation in which I have to choose 

between them. I find myself inclined to choose [α]. I report, on that basis, that I prefer [α] 

to [β]. (1996, 268) 

 

Supposing that every act-function corresponds to some imaginable act, one could inter-

pret ≽ as encoding an agent’s dispositions to judge that she would choose one imagined 

act over another. Sobel’s (1997) notion of a ‘pairwise preference’ is described in a similar 

vein. 

It is somewhat doubtful that we can always conceive of an act which corresponds to 

an arbitrarily chosen pattern of outcomes—I at least struggle to picture an act which al-

ways brings it about that, say, I have a glass of iced tea, even at worlds where tea does 

not exist. There is, however, perhaps a more reasonable way to understand the situation, 

suggested by the following passage by Glen Shafer: 

 

[Savage] saw no reason why a person could not think about patterns of consequences cor-

responding to imaginary acts and formulate preferences between such patterns. In order to 

construct a preference between one pattern of consequences and another, it is not necessary 

that a person should have available a concrete act that produces this pattern, or even that 

the person should be able to imagine such an act. (1986, 470, emphasis added) 
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Instead of representing acts—whether real or imagined—by virtue of describing their 

patterns of outcomes, we might instead suppose that act-functions represent patterns of 

outcomes directly.67 Some of these patterns may correspond to things that an agent might 

actually do, and some might correspond to things she might imagine herself doing, but 

many may not. It seems plausible to suppose, as Shafer suggests, that arbitrary patterns 

of outcomes are in principle available to the imagination, and that we might have prefer-

ences over such things, regardless of whether we can imagine any acts which might bring 

such patterns about. 

One way to cash this idea out in more detail would be to let each act-function stand for 

an immense (possibly infinite) conjunction of counterfactuals, 

 

(s1 □→ oi) & … & (sn □→ oj) 

 

It is then to be supposed that ‘(si □→ oi)’ is one of the conjuncts just in case the conjunc-

tion it forms a part of corresponds to the act-function which maps si to oi.
68 It could then 

be said that: 

 

({si}, oi│...│{sn}, on) ≽ ({sj}, oj│...│{sm}, om) if and only if the S prefers that (s1 □→ oi) & 

… & (sn □→ on) rather than that (s1 □→ oj) & … & (sn □→ om) 

 

Patterns of outcomes are not the kind of things that an agent does, nor are they the imme-

diate objects of choice in any practical sense—so, again, this way of interpreting the ele-

ments of 𝒜 does not sit well with a behavioural interpretation of ≽. Note, however, that 

on this interpretation of act-functions there can be no question as to whether SAV0 is 

true: every act-function can be uniquely paired with some conjunction of counterfactuals, 

regardless of what the decision-maker’s situation happens to be like. 

There are complaints that can be raised, though. As Joyce (1999, 107-8) notes, it’s 

exceedingly unlikely that anyone’s preferences understood as such would satisfy SAV1, 

which requires ≽ to be complete on 𝒜. For one thing, there are far too many patterns of 

outcomes to imagine—uncountably many in Savage’s system, as it turns out—and there 

seems to be no rational reason to consider all of them. This point has both descriptive and 

normative force. Joyce argues that completeness is not a requirement of rationality, but 

 
67 In §5.4, I provide an argument from another direction that the best interpretation of Savage’s act-

functions is in terms of patterns of possible outcomes which may or may not correspond to things the agent 

in question might do.  

68 Joyce (1999, 62-5) argues that counterfactual conditionals would be inadequate for this way of inter-

preting Savage’s act-functions, and instead posits a (somewhat mythical) ‘Savage conditional’ to play the 

role instead. It is orthogonal to my purposes to consider whether his argument against the use of counter-

factuals is convincing, as the point I wish to make can be made just as well if we assume that every act-

function represents an immense conjunction of Savage conditional statements. 
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it’s all the more clear that completeness is not even close to descriptively plausible ei-

ther—and this places pressure on any version of characterisational representationism 

based on Savage’s theorem (or a theorem which requires a similarly rich space of act-

functions). Furthermore, without completeness, it’s unclear whether agents would non-

trivially satisfy Savage’s other preference conditions. Note that almost every Savage-like 

theorem assumes SAV1; indeed it’s very difficult to achieve a strong representation result 

without it. Those that try to do without SAV1 appeal to a notion of coherent extendibility 

(discussed shortly) and have correspondingly weak uniqueness results; see, e.g., 

(Seidenfeld, Schervish et al. 1990, 1995). 

Indeed, there is a tension within Savage’s system, between requiring that agents have 

complete preferences on the space of imaginable acts (or imaginable patterns of out-

comes) on the one hand, and how their decision-making behaviour is modelled on the 

other. The set of null events 𝒩 is intended to characterise those propositions that the agent 

has no credence in, and a decision-maker who satisfies Savage’s preference conditions is 

modelled as essentially ignoring null events when choosing between her options—hence 

she is indifferent between two act-functions if their outcomes only differ on null events 

(Definition 5.10). Introspectively, this is plausible—when deciding between options we 

discount the impossible (and perhaps even the exceedingly unlikely). It is odd, then, to 

simultaneously require of an agent a disposition to discount zero credence states when 

considering an acts’ outcomes, while at the same time require interesting preference pat-

terns between acts she is sure she cannot perform (or patterns of outcomes she is sure 

cannot be brought about). 

By dropping Act–Function Correspondence and reconstruing the interpretation of 𝒜 

as either a space of imaginable acts or arbitrary patterns of outcomes, all that has been 

achieved is the exchange of one problem for a host of others. While SAV0/SAV0’ seems 

salvageable under the re-interpretation, it comes at the cost of making SAV1 almost cer-

tainly false, and doubt can be cast on whether the remaining preference conditions can be 

non-trivially satisfied. There is, however, one further response to the constant acts prob-

lem which I will consider briefly, which seems to me the strongest response available to 

the proponent of characterisational representationism. 

5.2.4 Coherent extendibility 

Suppose that ≽ is incomplete on 𝒜, however ≽ and 𝒜 are supposed to be interpreted. 

This may be because ≽ is given a behavioural interpretation and can only be coherently 

understood as holding between act-functions which correspond to available acts, and so 

is not defined on act-functions which don’t correspond to available acts. (That is, 𝒜 might 

be taken to represent the union of 𝒜’ with some set 𝒜* of purely fictional entities, where 

any behavioural preference relation would be defined only for pairs taken from the subset 

𝒜’.) Alternatively, we may suppose that ≽ is incomplete on 𝒜 because ≽ is defined in 
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terms of preferences between patterns of outcomes, but the agent only has preferences for 

a limited number of such patterns. 

In any case, if ≽ is incomplete on 𝒜 then SAV1 is false, then many of Savage’s other 

preference conditions may be only trivially satisfied, and ≽ is likely too impoverished to 

guarantee that ≽u and ≽b are complete on 𝒪 and ℰ respectively. Nevertheless, there may 

be an extension of ≽, call it ≽+, which does satisfy all of Savage’s conditions. Define an 

extension ≽+ of ≽ as any superset of ≽; thus ≽+ agrees with ≽ regarding all those ele-

ments of 𝒜 for which ≽ is defined. If any extension of ≽ conforms to Savage’s condi-

tions, then Theorem 5.1 entails that it can be given an expected utility T-representation. 

This fact could prove useful for characterisational representationism in dealing with the 

issues raised in §§ 5.2.2–3. 

Say that ≽ is coherently extendible if it has at least one extension ≽+ which does satisfy 

Savage’s conditions (or the preference conditions of whatever theorem we are consider-

ing). It is not at all obvious that the preferences (however understood) of ordinary agents 

are coherently extendible with respect any contemporary Savage-like theorem’s prefer-

ence conditions—but if they are, then the path is open for the advocate of characterisa-

tional representationism to attempt a characterisation of credences and utilities in terms 

of the representations that the theorem supplies for the extended relations ≽+.  

In most cases, if ≽ is coherently extendible at all, then there will be a large number of 

extensions which satisfy the stated conditions, and something would have to be said about 

this fact. As suggested in Chapter 4, however, non-uniqueness is not a fundamental prob-

lem for characterisational representationism—so long as a theorem gives us substantial 

restrictions on the range of available interpretations, it need not have the Standard 

Uniqueness Condition. One could appeal to further information to filter between alterna-

tive extensions of an agent’s ≽, thus (assuming the theorem in question has strong unique-

ness results) arriving at a single expected utility representation of the agent’s preferences. 

Alternatively, it could be argued that agents’ credences (and likewise their utilities, mu-

tatis mutandis) are best represented by a set of probability functions—viz., the set deter-

mined by each coherent extension of her preference relation. This idea is not new; in the 

literature a set of probability functions designed to represent an agent’s total credence 

state is called her representor. For discussion, see (Levi 1974), (Williams 1976), (Jeffrey 

1983), (Walley 1991), and (van Fraassen 1990, 1995). 

Appealing to coherent extensions of ≽ seems to me the best hope that characterisa-

tional representationism has for dealing with potentially incomplete preference systems—

both for theorems within the Savage paradigm, and other theorems besides. For the strat-

egy to be successful, of course, the preferences of ordinary agents must be coherently 

extendible to begin with—but it hardly seems like an impossible task to construct prefer-

ence conditions such that this is possible. Moreover, to avoid a conflict with desideratum 

(3), ≽ will have to be defined on enough of 𝒜, however it is interpreted, that the range of 
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possible coherent extensions is substantially restricted. This may not be so, for instance, 

if act-functions correspond to infinite conjunctions of counterfactuals, as in §5.2.3—in 

which case, an ordinary agent may have no preferences over 𝒜, so every way of satisfying 

the relevant preference conditions will be a coherent extension of her ≽-ranking, and the 

representor will be utterly uninteresting qua model of her credences and utilities. Similar 

things are likely to be true if ≽ is defined on the union of 𝒜’ with some set 𝒜* of purely 

fictional entities, if 𝒜* constitutes the very large majority of ≽’s domain. 

Let me summarise where things stand with the constant acts problem in relation to 

characterisational representationism. Admitting imaginary act-functions into 𝒜 and as-

suming Act–Function Correspondence is not a coherent possibility. Thus, the proponent 

of characterisational representationism might try to retain Act–Function Correspondence 

while reconstructing 𝒜 from the ground up à la Lewis, or she might drop Act–Function 

Correspondence and supply some alternative interpretation of 𝒜 and ≽.  

Either option is consistent with appealing to a notion of coherent extendibility to 

achieve a final representation of an agent’s credences and utilities. Appealing to coherent 

extensions will in general mean giving up on using the theorem to construct a unique ℬel 

and 𝒟es model of the agent, but given the kinds of strong preference conditions needed 

to attain strong uniqueness results that was likely a fool’s errand in any case. The appeal 

to coherent extensions also suggests the possibility of retaining a behavioural interpreta-

tion of ≽ even without Act–Function Correspondence. It is less clear, however, whether 

ordinary agents’ preferences over whatever 𝒜 represents are (a) coherently extendible to 

begin with, and (b) sufficiently rich so as to substantially narrow down the range of pos-

sible coherent extensions. 

5.3 States, events, and the objects of credence 

The next problem that I will discuss concerns the domain of ℬel. In this section, I will 

first outline the problem as it arises within Savage’s theorem in particular, before gener-

alising to other theorems in the broader Savage paradigm. I will argue that these theorems 

do not allow us to assign credence values to enough propositions, or to the right kinds of 

propositions, to adequately represent anybody’s total credence states: credences are only 

assigned to disjunctions of states, and many of the most interesting propositions—includ-

ing those about acts and outcomes—cannot be expressed as a disjunction of states. 

That the ℬel function derived using Savage’s theorem in particular does not supply 

credence values for acts has been noted before (see for example Spohn 1977, 117-8, Joyce 

1999, 117); indeed those who accept the ‘crowding out’ thesis that I will discuss in §5.3.2 

sometimes see this as a unique advantage that Savage’s decision theory has over others. 

This characteristic of Savage’s theorem is usually attributed to his assumption that states 

are act-independent. As I will show, however, the same property attaches to all (single-

primitive) representation theorems which make use of the same basic formal structures 
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that Savage employs—even those which don’t assume that states must be act-independent 

in any ordinary sense. The problem here is not unique to Savage, and cannot be avoided 

just by tweaking some of his background assumptions. 

5.3.1 The domain of Savage’s ℬel 

I will assume, for now, that both SAV0/SAV0’ and Act–Function Correspondence are 

true. I will argue shortly that such strong assumptions aren’t needed to bring out the issue 

her discussed, but it’s easiest to begin with them nonetheless. This implies that states are 

outcome-independent, for otherwise Savage’s act-functions don’t make sense qua repre-

sentations of possible acts an agent might take. Likewise, I will set aside concerns about 

whether ideal or non-ideal agents satisfy Savage’s preference conditions—I will assume 

that everyone does. And finally, to avoid the worry that ordinary agents’ total credence 

states might not be representable by probability functions, I will even assume that non-

ideal agents tend to be probabilistically coherent. These assumptions load the dice very 

much in favour of an appeal to Savage’s theorem as a basis for characterisational repre-

sentationism. However, even if they are granted, there is a further problem: the domain 

of ℬel is simply not rich enough to allow for the representation of our full range of cre-

dence states. 

In Savage’s system, ℬel is defined only for events. Every event corresponds directly 

to a particular proposition—in particular, to some disjunction of states—but, crucially, 

not every proposition corresponds to an event. In what follows, I will refer to propositions 

which don’t correspond to an event as non-event propositions. The question is whether 

these non-event propositions form an important class, with members towards which the 

ordinary subject does (or can) have credences. There are two kinds of propositions to 

consider; namely, those regarding what acts she might perform, and those regarding the 

outcomes that might result. 

That Savage’s 𝒞r is undefined for propositions regarding what acts we might perform 

follows immediately from the assumption of act-independence. Since the choice of (and 

performance of) any one act α implies foregoing the other options on the table, every state 

is consistent with the performance and non-performance of α. Thus, the line that divides 

α is performed from its negation cuts across the lines that divide states from one another—

neither proposition is equivalent to any disjunction of states. But—as I will argue in more 

detail below—these kinds of propositions certainly do seem like things that we can have 

opinions about! 
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Figure 5.1 

 

The above toy model will help to bring out this point (Figure 5.1). The entire rectangle 

is the set of all possible worlds, partitioned into a number of states (s1 – s6), each of which 

contains six different worlds—some are worlds where α is performed (represented by α), 

and some are worlds where α is not performed (represented by ~α). Every event corre-

sponds to some collection or other of states; for instance, {s1}, {s3, s4}, or {s1, s3, s5}. 

However, the proposition that α is performed—the set of all α worlds—does not corre-

spond to any collection of states: it is a non-event proposition. We can make ever finer 

distinctions between states, but as long as every state has both worlds where α is per-

formed and worlds where α is not performed, neither proposition will ever correspond to 

any event. States are just not fine-grained enough to make the relevant distinctions be-

tween possibilities. 

The same can be said for outcome-propositions. Each outcome o ∈ 𝒪 is distinct, and 

if one outcome obtains then no other outcome does. By the same reasoning that we have 

just seen, then, states don’t cut finely enough to make the relevant distinctions we need 

here. The same applies to any proposition I care about, the truth of which is at least par-

tially dependent on my choices. For instance, suppose that some outcomes are nice, while 

other outcomes are nasty. Then, the proposition something nice happens is a non-event 

proposition: every state is consistent with nice things happening and also with nasty things 

happening, so there is no way to form that proposition as a disjunction of states. Or, per-

haps I care about whether I get to eat tomorrow, and this is not guaranteed to occur inde-

pendently of my actions. Then s will be compatible with both I will eat dinner tomorrow 

and I will not eat dinner tomorrow, so neither proposition is an event—although I cer-

tainly do have credences (high credences, in fact) that I will be eat dinner tomorrow. 

It might be supposed that ℬel does manage to supply an accurate representation of the 

preference-rational subject’s credences with respect to events only, despite falling silent 

regarding non-event propositions. This is problematic, given just how many important 

non-event propositions there are—to recall, outcomes may make reference to “money, 

life, state of health, approval of friends, well-being of others, the will of God, or anything 

at all about which the person could possibly be concerned”. Taking this line would mean 
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that by using Savage’s theorem, one could at most only arrive at a very partial character-

isation of what credences are—and many of the most interesting credence states will need 

to be characterised in some other way. This kind of retreat to a merely partial characteri-

sation seems poorly motivated, though. In particular, there seems to be no good reason to 

think that the metaphysics of credences should be disjunctive, in the sense of involving 

one account for what it is to have a credence of x towards one class of propositions and 

another account for what it is to have a credence of x towards the rest. If the representation 

theorem does not give us enough to characterise all of the credence states that we have, 

then it seems rather more sensible that we should seek some other, more general account 

of the nature of credences. 

Indeed, it is unclear whether ordinary agents have credences with respect to many 

events at all. On Savage’s conception, states are very odd creatures—and so too, there-

fore, are most events.69 Recall, for instance, the characterisation of states as dependency 

hypotheses (§5.2.2): to satisfy Savage’s required conditions, individual states must have 

something like the character of a dependency hypothesis, yet it’s doubtful that any ordi-

nary agent is able to contemplate even a single dependency hypothesis let alone have 

credences regarding them. The point is all the more convincing for arbitrary disjunctions 

of dependency hypotheses. Of course, the ordinary agent will likely have credences for 

the necessary event, 𝒮, and the impossible event, ∅; but it’s doubtful that she will have 

credences for more complicated events. Note, of course, that Savage’s ℬel function is 

defined for all events—so besides being impoverished in one sense, the domain of Sav-

age’s ℬel also seems too rich in another. 

So much for the problem as it arises in Savage’s system. More than one implausible 

assumption went into the above argument; perhaps the right lesson to draw is that one 

would do best to not appeal to Savage’s theorem when developing characterisational rep-

resentationism—something that should already be obvious given fact that Savage’s ℬel 

is limited to probability functions. However, the problem just outlined goes beyond Sav-

age’s theorem. To see this, note that to raise the central worry here we don’t need to 

assume that every state is compatible with every act, nor that every state is compatible 

with every outcome. If so much as one state is compatible with both P and ¬P, then P and 

¬P are non-event propositions. It would be enough to make the point to simply establish 

that there are states compatible with multiple, mutually inconsistent acts and outcomes. 

For example, in the following model, although only one state (s1) is consistent with 

both α is performed and its negation, the proposition α is performed (the set of α worlds) 

is not equivalent to any disjunction of the states: 

 

 
69 This is a point which has long been known; see, for instance, (Balch and Fishburn 1974, 57-8) and 

(Joyce 1999, 118). 
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Figure 5.2 

 

For the problem to arise, all that is needed is that one or both of the following two condi-

tions are satisfied: 

 

(A) There are acts, about which S has credences, such that at least one state exists that is 

consistent with the performance and the non-performance of that act 

(B) There are outcomes, about which S has credences, such that at least one state exists that 

is consistent with that outcome obtaining and it not obtaining 

 

Neither (A) nor (B) imply that every state is consistent with every outcome, nor even with 

every act. Their satisfaction is compatible, for example, with supposing that every out-

come is a maximally specific proposition (or just an act-state conjunction), such that every 

outcome is consistent with exactly one state. 

These are very weak conditions, and their presence in any Savage-like representation 

theorem can be assumed for very good reasons. The motivation for (B) is obvious. The 

point of decision theory applied to situations of uncertainty is to determine which choice 

to make on the basis of the different outcomes that each available act would have, given 

each of the different states that are consistent with what we know to be true. A quick 

glance at the standard decision matrix (§2.4) will reveal that the framework is useless if 

every act has exactly the same outcome at a state as any other act. Dominance reasoning, 

for example, would be impossible, as no act could do better at a state than any other. 

Likewise, if (A) were false then there would be no sense in applying decision theory in 

the first place—each state would determine that a particular choice was made, so there 

would be no meaningful comparison of the outcomes of different acts at a state. 

More generally, we ensure that states are consistent with multiple options and with 

multiple outcomes because it is a basic presupposition of decision theory that we are able 

to freely make choices between alternative acts with interestingly different consequences 

dependent upon the true state of the world, of which we are uncertain. But where the true 

state (whatever it may be) entails that a particular choice was made, and that any alterna-

tive choice would have resulted in the same outcome anyway, then there was never the 
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possibility to choose otherwise or even a reason to contemplate the choice in the first 

place. There would be no point in quantifying our uncertainty about states if neither of 

(A) and (B) were true, as the true state would not afford us a choice. Decision-making is 

incompatible with this kind of fatalism. When making a decision regarding what act to 

perform, we engage in a minor fiction: that the actual state of the world is compatible 

with multiple acts being chosen, each with potentially different outcomes. 

The extent of the problem obviously depends on how many acts and outcomes satisfy 

the two conditions. If there were only one act which made (A) true, and one outcome 

which made (B) true, then the problem would not be very widespread—the subject could 

not be represented as having credences about that act, or about that particular outcome, 

but ℬel would be capable of representing credences about other acts and outcomes. A 

bullet worth biting, perhaps. But the foregoing reasons indicate that the problem is exten-

sive, not limited to one or a few acts and outcomes, but applicable to most acts and out-

comes at least. Some special acts might be logically entailed or logically inconsistent 

with some states, and likewise for some special outcomes, but a decision-theoretic frame-

work will not be widely applicable if this is true of most acts and outcomes. 

For a Savage-like theorem to avoid the worry being raised here, it would need to be 

the case that each state implies that a particular act was chosen, and likewise that a par-

ticular outcome obtains—and for that matter, each state would have to imply either P or 

¬P, for any proposition P that we suppose the agent can have credences about. No such 

theorem presently exists, and it’s difficult to imagine what one would look like; at the 

very least, the familiar Savage-style representation of acts as functions (or partial func-

tions) from 𝒮 to 𝒪 would be off the table. The majority of theorems—for both expected 

and non-expected utility theories—closely follow Savage in this way of characterising 

the basic objects of preference (see, for example, Stigum 1972, Gilboa 1987, Schmeidler 

1989, Tversky and Kahneman 1992, Buchak 2013, Alon and Schmeidler 2014). Some of 

these theorems manage to avoid appealing to constant act-functions, but all imply both 

(A) and (B). Luce and Krantz’s (1971) theorem departs slightly from Savage’s paradigm 

by representing acts as partial functions from 𝒮 to 𝒪, but while they explicitly reject Sav-

age’s act-independence assumption, their states are still consistent with multiple acts and 

outcomes.70 Despite their differences, though, even in these systems both (A) and (B) are 

implied and the problem raised here applies. 

In his (2014), Kenny Easwaran adapts the Savage paradigm and in effect represents 

acts as partial functions from 𝒮 to 𝒪, requiring in particular that distinct act-functions are 

either defined on precisely the same, or wholly disjoint, subsets of 𝒮. It seems consistent 

with his results to have each act-function defined on a distinct subset of 𝒮, thus falsifying 

condition (A) and thereby also (B). However, Easwaran is able to derive interesting re-

sults from preferences between his act-functions only because he assumes the existence 

 
70 This is a direct consequence of their act-richness assumptions, specifically axiom 1 of definition 1. 
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of a primitive ≽b relation. Through ≽b, Easwaran sets up “correspondences” between 

disjoint events via their similar credence values, thus allowing for fruitful comparisons 

between act-functions defined for wholly distinct sets of states. Because of this, Easwa-

ran’s construction is unsuitable as a basis for characterisational representationism (a fact 

that he is explicitly content with). It is doubtful that any interesting representation theorem 

could be developed using this kind of formal structure without appealing to something 

like this correspondence relation. 

5.3.2 Deliberation and prediction 

Perhaps the problem is not as bad as I have made out—there are, after all, some who 

argue that we lack credences regarding whether we will perform one or another of the 

acts currently available to us in a given choice situation. Wolfgang Spohn, for example, 

claims that “probably anyone will find it absurd to assume that someone has subjective 

probabilities for things which are under his control and which he can actualise as he 

pleases” (1977, 115). Spohn’s claim is that because it is entirely under her control whether 

S chooses to perform a given act or not, there is no sense in her being uncertain—or 

certain—about whether the act will be enacted; she simply lacks those credence states. 

Let us refer to this as the Deliberation Crowds Out Prediction (DCOP) thesis; besides 

Spohn, it has also been advocated by (Levi 1989, 2000, 2007), (Gilboa 1994), and more 

recently, (Price 2012), and (Ahmed 2014).  

To continue the thought, outcomes might also be conceived of as being closely con-

nected to acts, in such a way that if we were to lack credences in the latter then we might 

plausibly lack credences in the former. Indeed, Spohn (1977, 116) argues for precisely 

this. His argument presupposes that agents’ credences can be represented by a probabil-

istically coherent credence function, 𝒫r, such that for any pair of propositions P and Q in 

𝒫r’s domain, 

 

𝒫r(P) = 𝒫r(Q).𝒫r(P|Q) + (1 – 𝒫r(Q)).𝒫r(P|¬Q) 

 

If this were true, then if the agent had credences regarding some proposition P which 

probabilistically depends on her performance of an act α, she would be able to indirectly 

induce an unconditional probability regarding α using the above equality; hence, if she 

does not have credences regarding α, she cannot have credences for any such P. Of course, 

the generality of this argument is questionable: ordinary agents are not plausibly proba-

bilistically coherent, and it’s not clear whether even ideally rational agents ought to be 

either. 

In any case, though, the important point is that there may be ways to tie credences 

about outcomes to credences about acts in such a way that a lack of credences with respect 

to the latter plausibly leads to a lack of credences with respect to the former. (For example, 
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if outcomes were simply act-state conjunctions, then plausibly there should be no cre-

dences for outcomes inasmuch as there are no credences for acts.) If so, then the truth of 

DCOP would certainly diminish the force of the problem raised in §5.3.1. Indeed, the fact 

that Savage’s ℬel will not represent credences about such things would be a particularly 

attractive feature of applying his framework—the relevant credences states never existed 

to begin with! 

I do not share Spohn’s sense of absurdity that is supposed to come with ascribing cre-

dences to S regarding acts that are presently under S’s complete control to perform, should 

she so choose. One of the strongest arguments (read: not based on the betting interpreta-

tion) for the DCOP thesis seems to be that credences regarding which action will be cho-

sen in the present circumstances play no role in rational decision-making and so there is 

no theoretical reason to posit such states (Spohn 1977, 114-5). Even supposing that this 

is true—it may be in Savage’s decision theory, but of course there are alternatives (e.g. 

Jeffrey); see also Rabinowicz (2002, 112-4) and Joyce (2002) for a critique of this 

claim—it is one thing to say that credences about acts play no role (or should play no 

role) in decision-making and quite another to say that we simply don’t have such cre-

dences. 

By way of example, note that utilities for events also play no role in decision-making 

according to Savage’s decision theory. By hypothesis, what event obtains is independent 

of the choice between acts, so any valuation of the events on the subject’s behalf is irrel-

evant to her choice. It would be unreasonable to infer from this that we don’t have utilities 

for events; at least, it certainly seems to me that I am able to judge which of two events I 

would rather be true, even if I know that this is entirely beyond my control. One of the 

central theoretical roles of utility assignments is to represent a subject’s preferences over 

ways the world might be—that such states may not play a role in rational decision-making 

(according to Savage) does not mean that there is no reason to posit them at all. Likewise, 

I seem to be able to ascribe credences about my own actions to myself, even during de-

liberation. On the basis of past evidence, I know that when I am faced with the decision 

between caffeinated and non-caffeinated beverages, I tend to choose the former; surely, 

were I in that situation now, I could be confident that I would do the same—and I should 

be able to represent such confidence in my credence function. I may even surprise myself 

with an herbal tea on occasion! 

Indeed, denying the existence of these credence states comes with severe theoretical 

costs. For instance, the thesis is in conflict with the principle of Conditionalisation. The 

actions that we might make in future situations aren’t under our complete control now, 

and neither are the actions that we have already made. So we can have credences with 

respect to future and past actions. This is as it should be—in many circumstances, we 

ought to take credences about our past and future actions into account when making de-

cisions. It is only credences about the actions that we might now perform which are ruled 
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out by the thesis that deliberation crowds out prediction, as it’s only those which are com-

pletely under our present control. But this certainly seems odd: I am confident now that I 

shall choose the caffeinated beverage when the option is available tomorrow; and tomor-

row, after I have chosen the caffeinated beverage (probably), I shall be confident of hav-

ing done so—but for that brief moment when I make the choice, my credences regarding 

that act will vanish from existence, only to reappear a moment later. Conditionalisation 

will not explain such changes. For similar reasons, if we necessarily lack credences re-

garding acts (and outcomes!) then we are only a short step away from counterexamples 

to both the General Reflection Principle (van Fraassen 1995) and the Principal Principle 

(Lewis 1980b).71,72 

There may be some sense in which ‘deliberation crowds out self-prediction’, but what-

ever that sense may be, it’s not the sense in which we simply lack credences about acts. 

Rabinowicz (2002, 92-3), for example, suggests that perhaps credences about acts “are 

available to a person in his purely cognitive or doxastic capacity, but not in his capacity 

of an agent or practical deliberator”; that is, while the agent does have credences about 

acts, while deliberating about what to do these credence states are (for whatever reason) 

cognitively inaccessible. This may be more plausible if we distinguish between explicit 

and conscious assignments of credence values to acts about propositions from what we 

might call standing or implicit credence states. Alternatively, one might try to establish 

that if an agent S has credences regarding acts, then she ought not to consider or use those 

credences whilst deliberating—rational deliberation crowds out the consideration and/or 

application of certain credence states, perhaps, but not their existence. 

Moreover, whatever we might say about credences towards acts, there is still the prob-

lem with outcome propositions. To recycle the earlier examples, I may or may not eat 

dinner tomorrow, depending on what I choose to do now. If any state at all is compatible 

with both of these outcomes, then I will eat dinner tomorrow is not an event, and it will 

not be in ℬel’s domain.73 Whatever might be said about credences in acts specifically, we 

certainly do have credences regarding non-event propositions. 

 
71 Advocates of DCOP usually allow that we can have credences conditional on propositions about what 

acts we might perform; e.g., S should have a credence of 1 that she will perform α given that she performs 

α. This makes DCOP incompatible with the orthodox definition of conditional probabilities, but this is 

hardly a severe cost—as Hájek (2003) shows, there are strong independent reasons for rejecting the ortho-

dox definition. 

72 Because it is already incompatible with conditionalisation, accepting DCOP will not bring us into 

conflict with Rachael Briggs’ (2009) Qualified Reflection principle, which states that “an agent should 

obey Reflection only if she is certain that she will conditionalise on veridical evidence in the future” (59). 

This is the right result, but for entirely the wrong reason. 

73 A further point is relevant here: That I perform a particular act in the future is not a guaranteed out-

come of any present actions I may now take, so the problem extends even to credences about future acts.  

This is obviously problematic for the reason mentioned above: Many decision situations seem to require 

taking such credences into account. Thanks to Alan Hájek for pointing this out. 
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To sum up: both ℬel and 𝒟es appear to have inadequate domains if they are to serve 

as representations of ordinary agents’ credences and utilities respectively. The origin of 

the problem, of course, is the representation of acts as functions from 𝒮 to 𝒪. This aspect 

of the Savage paradigm accounts for much of its popularity: act-functions provide a pur-

portedly straightforward means of connecting acts to objects of uncertainty (states and 

events) and objects of utility (outcomes), all the while allowing theorists to characterise 

behavioural preferences over acts in a manner that appears to make the relation transpar-

ent to empirical observation. In the next section I will argue that such appearances are 

misleading, but for now the important point is that the use of act-functions comes with a 

cost. If these functions are to represent acts, then constraints must be placed on 𝒮 (and 

hence ℰ) and 𝒪—constraints which are ultimately manifest in the limitations of the ℬel 

and 𝒟es functions derived from ≽ on 𝒜. 

5.4 Acts and intentionality 

The proponent of characterisational representationism wants to be able to say that their 

chosen representation theorem allows us to characterise what it is for an agent to have 

such-and-such credences and utilities by reference to her preferences. With this goal in 

mind, then on pain of circularity the interpretation of the theorem’s basic elements had 

better not involve some (tacit or explicit) appeal to the agent’s credences or utilities. It 

should be possible, that is, to understand and specify the basic notions involved in the 

statement of the theorem without any prior knowledge regarding her credences and/or 

utilities. This was our desideratum (4), outlined in §3.4.5. Many proponents of character-

isational representationism will also want to say that the relevant preferences are behav-

ioural, and that something like Savage’s framework lends itself well to the project of 

naturalising away the mental—that is, that Savage-like theorems satisfy desideratum (5). 

I will argue that neither of these desiderata will be met by any Savage-like representa-

tion theorem—at least inasmuch as desideratum (2) has a hope of being satisfied.74 This 

is contrary to first appearances, as the basic framework that Savage described seems to 

be well-suited for a fully naturalistic interpretation—indeed it was designed with a be-

haviouristic definition of credences and utilities specifically in mind, and theorems within 

the paradigm are still today treated as underwriting behavioural definitions of credence 

and utilities. We take a subject, S, in a given decision-making context. From a purely 

physical standpoint we describe—with an appropriate degree of specificity—the set of 

acts (𝒜’) that S might perform in that context, such that each one precludes the perfor-

mance of any other in the set. 𝒜’ forms the domain of a behaviourally-interpreted ≽. We 

 
74 In fact, I will argue that desiderata (2), (4) and (5) cannot be simultaneously met by any current 

representation theorem, for essentially the same reasons discussed in this section. The best that characteri-

sational representationism can do is try to satisfy (2) and (4), given how things currently stand. See Chapter 

9. 
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can observe which of these acts S actually decides to perform, and this will sit at the top 

of her ≽-ranking. This gives us some information, but not enough. To get at the rest of 

her preferences, we suppose that S’s choice-dispositions regarding pairs of acts in 𝒜’ can 

be determined without reference to her mental states, thus supposedly giving us every-

thing we need to construct an effectively unique ℬel and 𝒟es under the assumption that 

S maximises expected utility. 

That is a common conception of how a Savage-like theorem is applied towards the 

behavioural characterisation of credences and utilities. Constant act-functions and other 

imaginary act-functions are treated as a convenient fiction, to be dealt with perhaps in 

some future patched-up theorem or explained away by reference to coherent extensions—

but either way they aren’t taken to be especially devastating for the intended behaviour-

istic interpretation of ≽ and its relata. For the most part, the received wisdom is that Sav-

age has basically shown us how to work backwards from a subject’s behavioural dispo-

sitions to a unique representation of her credences and utilities. 

But things are not so simple. The acts as they appear in 𝒜’ are things like walk to work, 

drive to work, skip to work, stay at home, and so on. However, Savage’s framework re-

quires ≽ to be defined over entities with a particular formal structure—i.e., act-func-

tions—so in order to make use of any Savage-like theorem we first need to associate each 

act in 𝒜’ with a unique act-function—and therein lies the origin of the problems to be 

discussed in this section. The central issue of this section concerns the right way associate 

act-functions with acts. 

There are two options for associating act-functions with acts that I will discuss. First, 

each act-function ℱα might represent an act α by picking out α’s actual causal profile. 

Second, ℱα might represent α by picking out α’s causal profile as the decision-maker 

understands it to be. Neither option is forced upon us by Savage’s formalism, so the 

choice depends on which will afford the more useful interpretation of his theorem. In 

§5.4.2, I will argue that only the second option is viable, if desideratum (2) is to be satis-

fied. However, in what follows, I will argue that regardless of which option we pick, there 

is no way to arrive at an adequate association of act-functions and acts without some prior 

access to certain of the subject’s intentional mental states—including, most importantly, 

some of her doxastic states. 

5.4.1 Specifying states and specifying outcomes 

In §5.1.1, I outlined the standard way in which act-functions are assumed to be associated 

with acts. Given first an appropriate specification of 𝒮 and 𝒪, each act α in an appropri-

ately specified set 𝒜’ can be associated with a unique act-function which essentially for-

malises α as the act which would lead to such-and-such outcomes if it were performed in 

such-and-such states. That is, given a choice of 𝒮 and 𝒪, we can always pair each α in 𝒜’ 
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with a unique act-function that represents α’s actual causal profile if the following two 

conditions hold:75 

 

(i) All s in 𝒮 are logically independent of the performance of the acts in 𝒜’ 

(ii) All s in 𝒮 are outcome-functional with respect to the specification of the acts in 𝒜’ and 

the outcomes in 𝒪 

 

These two constraints are not necessary for being able to map acts to unique act-functions, 

but they are sufficient—so long as (i) and (ii) hold, there will be an act-function which 

uniquely corresponds to any act α in 𝒜’. The key point for what follows, however, is that 

given (i) and (ii), the appropriate specification of 𝒮 is constrained by the specifications 

given of 𝒜’ and 𝒪. The same holds true for any Savage-like representation theorem given 

the minimal conditions (A) and (B) noted at the end of §5.3.1. For this reason I will sim-

plify the discussion and assume that (i) and (ii) hold in general. 

Importantly, while it’s true that given (i) and (ii) there will be only one act-function 

specifically from 𝒮 to 𝒪 which corresponds to a given α in 𝒜’, there may be many other 

act-functions defined for different sets 𝒮* and 𝒪* which also directly correspond to α—

and there is more than one possibility for what 𝒮* and 𝒪* could be (Levi 2000). There 

are also different ways of carving up the range of acts 𝒜’, depending for instance on the 

degree of specificity with which each act is described. The ℬel and 𝒟es pair that we end 

up with depends heavily on the particular way in which 𝒮 and 𝒪 are specified, so much 

depends on getting it right. I will argue that there is no way to do this without having prior 

access to the agent’s credences and utilities (or something nearby). 

Let us first of all get the obvious problem out of the way: if 𝒪 is a partition of propo-

sitions which are highly (if not maximally) specific with respect to what the agent cares 

about, then it is doubtful than any appropriate specification of 𝒪 can be given without 

reference to the agent’s utilities, desires, or (mentalistic) preferences. We need to assume 

that 𝒪 tracks what the agent cares about, of course, because a basic presupposition behind 

any representation theorem is that agents choose between options following the consid-

eration of those options’ potential outcomes—so differences between outcomes which 

matter to the agent will matter to the final choice. (A similar problem arises, of course, 

for ensuring that outcomes are context neutral, but not every Savage-like theorem imposes 

this requirement.) 

If we knew the decision-maker’s utilities, it would be easy enough to work out which 

distinctions make a difference to how she values possible states of affairs. Likewise, if 

we had access to her mentalistic preferences between propositions, it would likely be 

 
75 I assume, like Savage, that two acts with exactly the same pattern of outcomes—if such a thing is 

even possible under a sufficiently fine-grained partition 𝒮—can be treated as indistinguishable for the pur-

poses of decision-making. 
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possible to work out which propositions are highly (or maximally) specific with respect 

to what she cares about. But to have either kind of information we would need access to 

her intentional states, and the whole point of appealing to behavioural preferences was to 

avoid reference to mentalistic preferences and presupposed utilities. Moreover, if we had 

access to her utilities or mentalistic preferences over arbitrary propositions, it would be 

a mystery why 𝒟es should be defined only on 𝒪—and indeed, why this apparently very 

relevant information about her preferences should not be taken into account when con-

structing ℬel and 𝒟es! 

Note, furthermore, that in general it would not be plausible to treat the propositions in 

𝒪 as maximally specific simpliciter, and thus specific with respect to anything the agent 

might care about. Such a move would be in obvious tension with any theorem which, like 

Savage’s, has ≽ defined on act-functions which pair outcomes with multiple states. (In 

§5.4.2, we will see another reason for thinking that the elements of 𝒪 should not be too 

specific, if 𝒟es is supposed to capture the utilities of any ordinary agent.) 

An equally worrying problem arises with the proper specification of 𝒮. Besides being 

constrained by 𝒪, any adequate specification of 𝒮 is also constrained by 𝒜’, and here we 

also see problems. As it was characterised in §5.1.1, 𝒜’ ought to be a set of mutually 

exclusive acts which jointly exhaust the agent’s options in a given situation, described at 

a reasonably specific degree of detail, each of which—and this is the important part—is 

such that the agent is certain that she would perform the act, if she were to intend as 

much.  

We will set aside, for now, issues relating to deciding the right degree of specificity 

when characterising the acts in 𝒜’. Likewise, we will set aside any issues that might arise 

as a result of the reference to the agent’s counterfactual intentions—though this should 

itself be a cause of unease for characterisational representationism, especially if intentions 

are best understood in terms of desires and means-ends beliefs (on this view, see 

Anscombe 1963, Bratman 1987, Ridge 1998). Our concern regards the condition that, if 

α is to appear in 𝒜’, then S should be certain of her capacity to perform α. If the set 𝒜’ 

is restricted to acts which the agent in question has some sufficiently high degree of con-

fidence in her capacity to perform, then we will need access to at least some of her dox-

astic states prior to the specification of 𝒜’.76 

 
76 An alternative to the characterisation of acts I have given can be gleaned, with minor modifications, 

from Jeffrey (1968): An act α is available (i.e., in 𝒜’) for an agent S just in case it would be rational for S 

to become certain that she has performed α by choosing to perform α—in the sense that her credence that 

she has performed α should be 1 after conditionalising on the evidence that she has chosen to perform α. 

This characterisation does not improve things greatly for characterisational representationism: The refer-

ence to what credences a rational agent would have under certain circumstances is still worrisome inasmuch 

as the goal is to understand and characterise what credence states are generally. 
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The motivation for this condition can be made evident with the help of an example:77 

 

Before Jill is a red button, above which is a sign reading ‘PRESS ME FOR $100!’ Jill 

knows that she can push the button easily, and also knows that the button will only do 

something if it’s pushed—however she is not certain what it will do. As a matter of fact, 

the sign is accurate and pushing the button will cause $100 to pop up from a hidden com-

partment, free for her to take with no strings attached. Jill could do with the money, but she 

does not believe the sign: she knows that a prank-centred TV show is in town, and is (for 

good reason) rather more confident that she is on camera, and that pushing the button will 

only result in her receiving a painful electric shock or some other cruel outcome. Jill 

chooses to leave the button alone. 

 

Clearly, Jill would have been able to press the button had she so intended, and she knows 

this. Furthermore, if she had so intended, she would have received $100 as a result of 

pressing the button. It would be admissible to let 𝒜’ be {push the button, leave the button 

alone}. But it would be problematic if we were to characterise 𝒜’ as {receive $100 by 

pushing the button, leave the button alone}. Jill needs the money, and if she knew that 

she could receive $100 by pushing the button then she most certainly would have chosen 

that option rather than preferring to leave the button alone. She did not push the button 

because she did not know that receiving $100 was one of her options.78 If acts are char-

acterised as those things which S would perform if she intended to, such that S is certain 

that she would be successful if she so chose, then receive $100 by pushing the button (and 

receive painful electric shock by pushing the button) will not be amongst Jill’s available 

acts—but push the button and leave the button alone will be. This seems to be as things 

should be—otherwise it would be exceedingly odd that Jill’s choices reveal a preference 

for not pushing the button over receiving $100. 

To be sure, this restriction on what acts can go into 𝒜’ raises some interesting issues. 

For one thing, requiring that Jill is certain of her capacity to perform any act in 𝒜’ may 

rule out too much—there are very few acts which Jill is absolutely certain she can per-

form. Nevertheless, something like this restriction is required to make sense of the fact 

that in Savage’s theorem (and all similar theorems), preference-rational agents are im-

plicitly modelled as being certain of their capacity to perform any of the acts over which 

they have behavioural preferences: this is why the expected utility of performing an act α 

is calculated through consideration of α’s—and only α’s—potential outcomes. If the agent 

 
77 A similar case to this is Brian Hedden’s ‘Raging Creek’ example, in (Hedden 2012, 347-8). 

78 If the reader is uncomfortable with treating receives $100 by pushing the button as an act, alternative 

examples which make essentially the same point are easy to come by. Ultimately, all that is required is a 

mismatch between the acts that are actually available to an agent and the acts she believes are available, 

where her choices would have been very different had she been aware of the facts regarding her available 

options. 
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gave some substantial credence to the thought that by intending to perform α, she might 

instead end up performing β, then presumably some consideration of β’s possible out-

comes should play a proportionate role in her deliberations about whether to try to do α. 

Another problem case arises when S is certain that she can perform α, but—as a matter 

of fact—if she were to try she would fail. Perhaps Jill is mistakenly certain that pushing 

the button would destroy the universe. In this case, it’s unclear whether destroy the uni-

verse by pushing the button should be included in Jill’s range of available acts—Jill her-

self seems to think it is! To deal with such cases, Sobel (1986) has suggested that rational 

agents can never be certain of a falsehood, but regardless of whether that’s true, the same 

is obviously false for the ordinary person on the street. A weaker suggestion would be 

that if rational agents are certain they can perform α, then they can. However, on any 

natural conception of an act, this still seems too strong—and it does not help us to char-

acterise 𝒜’ for non-rational agents. 

These and similar considerations lead Schwarz (2014c, 7-11) to suggest that decision 

theory is best thought of not as a theory about preferences over acts—conceived of as 

things like go to the park, get a drink from the fridge, and so on—but instead as a theory 

about preferences over intentions—specifically, intentions to act in different ways. Hed-

den (2012) defends a nearby view, though he casts his position in terms of ‘decisions’ 

rather than intentions. It seems somewhat more plausible, for example, to suggest that the 

ordinary agent has complete epistemic access to what intentions she might form, so that 

she can reliably be certain that if she decided to intend to perform α, then she would be 

successful in intending as such. 

Applied to a Savage-style representation theorem, the idea would then be that act-

functions are best understood as models of intentions to act. Intentions to act have varia-

ble causal consequences depending on the exact state of the world, so it is natural to think 

that functions from states to outcomes can be used to pick out intentions just as well as 

they pick out acts. However, intentions are also a kind of mental state, so if this is the 

right way to understand Savage’s formalism then it puts the lie to any purportedly behav-

iouristic or otherwise fully naturalistic interpretation of his and other similar representa-

tion theorems. 

In the next section, I will argue that act-functions should not be taken to directly rep-

resent either acts or intentions to act (or decisions to act)—these are things which an agent 

can do, but act-functions are better seen as models of how an agent represents the pattern 

of outcomes which result from the things she thinks she can do. We associate different 

patterns of outcomes with different things we might do, and on that basis make decisions, 

but the doing and our representation of its possible outcomes are quite separate phenom-

ena. Every act-function can be associated with a unique act α, to be sure, but only by 

picking out α as it is represented by the subject. 
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For now, however, the upshot of the foregoing discussion is clear: regardless of 

whether act-functions are supposed to represent acts or intentions (as they in fact are), 

there does not appear to be any way of pinning down the right collection of act-func-

tions—of specifying the right 𝒮 and 𝒪—without some prior access to what goes on inside 

the agent’s head. 

5.4.2 Acts, and our representations thereof 

The issues raised in §5.4.1 are all ultimately consequences of the truism that in order to 

make sense of an agent’s choices, it’s important to take into account how the she repre-

sents the decision situation that she is in and the options available to her. Let us therefore 

generalise the point: act-functions should not be taken to represent acts directly, but acts 

as they are understood by the decision-maker. In what follows, I will argue that there does 

not appear to be a plausible interpretation of act-functions such that (a) the interpretation 

is can be specified independently of how an ordinary agent represents her present deci-

sion situation, and (b) ℬel and 𝒟es are plausible models of her credences and utilities 

respectively. In the limiting case, we may be able to find an interpretation which satisfies 

(a) and (b) for ideally rational agents, but that won’t be of great use in helping us deter-

mine ℬel and 𝒟es for the ordinary person on the street who is, in the relevant respects, 

vastly less than ideal. 

(I am assuming, here and throughout, that how an agent represents her decision situa-

tion can be understood ultimately in terms of her credences. If so, the circularity of char-

acterising credences in terms of ≽ defined over act-functions is evident. For the purposes 

of the present dialectic, I do not think that this assumption is unreasonable: it may turn 

out that the assumption is mistaken, and that representations are not reducible to credence 

states but some other vaguely doxastic notion—however, I doubt that many proponents 

of characterisational representationism would be happy to accept a view wherein cre-

dences are defined in terms of preferences, which in turn characterised in terms of be-

liefs/acceptance/opinions/etc.) 

Consider again the example with Jill. The upshot of the following discussion is not 

altered if we characterise Jill’s options as acts or as intentions to act, so to simplify I will 

usually write just in terms of acts. (Alternatively, we could take an intention to ϕ as a kind 

of mental act.) There is, as a matter of fact, a range of things that Jill can do, behaviours 

which from a purely physical perspective are within her capacity. For instance, she can 

push the button by extending her arm with fingers pointed in a particular direction, or she 

can leave the button alone by keeping her arms at bay. Each of these has a particular 

causal profile: for each different state that the world might be in, each leads to some 

outcome or another. From a purely physical-behavioural perspective, then, both push the 

button and leave the button alone (and presumably any other act she might engage in) can 

be associated with unique act-functions defined on some appropriate 𝒮 and 𝒪, which we 



 

134 

 

will suppose have been given to us for free. (That is, we will ignore the complications 

mentioned above.)  

More specifically, suppose that {E1, E2, E3} is a partition of 𝒮, and (E1, o1│E2, o2│E3, 

o3) accurately represents the causal profile of, and is therefore associated with, push the 

button; while (E1, o3│E2, o2│E3, o1) accurately represents the causal profile of, and is so 

associated with, leave the button alone. Of course, the actual causal profiles of these two 

behaviours will be much more complicated, but for now, this simplifying fiction does no 

harm to the example—I will return to this point shortly. We know that Jill did not choose 

to push the button, so applying Savage’s conception of preference, 

 

(E1, o3│E2, o2│E3, o1) ≽ (E1, o1│E2, o2│E3, o3) 

 

Assuming ≽ satisfies Savage’s other conditions, then, Jill will be represented as an ex-

pected utility (ℰ𝒰) maximiser with credences ℬel on ℰ and utilities 𝒟es on 𝒪 such that: 

 

ℰ((E1, o3│E2, o2│E3, o1)) ≥ ℰ𝒰((E1, o1│E2, o2│E3, o3)) 

 

Now, we might suppose that Jill is an entirely rational decision-maker: she is extremely 

mathematically gifted and has perfect introspective access to her credences and utilities, 

and always chooses the option with the highest expected utility, given the way she takes 

the world to be. The problem, of course, is that if she misrepresents the causal profiles of 

her two options, then the ℬel and 𝒟es functions that we arrive at via Savage’s represen-

tation theorem will ipso facto be inaccurate. If Jill mistakenly thinks that push the button 

has the causal profile (E1, o3│E2, o2│E3, o1), for example, and that leave the button alone 

has the profile (E1, o1│E2, o2│E3, o3), then ℬel and 𝒟es will not be accurate models of her 

mental states. From her mistaken perspective, the expected utility of (E1, o1│E2, o2│E3, 

o3) is greater than (E1, o3│E2, o2│E3, o1)—that is why she chose not to push the button!79 

The problem, of course, is that Jill is being modelled as knowing exactly what acts are 

available to her, and what the causal profiles of each of those acts are in fact like. But 

such a model of Jill’s decision-making is almost certain to misrepresent whenever there 

is a mismatch between the actual causal profile of the act (expressed in terms of 𝒮 and 𝒪) 

and how she conceives of that act’s pattern of possible outcomes. Another way in which 

this kind of misrepresentation might come about would be if Jill did not recognise that, 

 
79 In his (1973, 249ff, 254), Amartya Sen discusses a related case, wherein observation of an agent’s 

preferences leads to a misrepresentation of her utilities (see also Sen 1993, 501). In Sen’s case, a subject 

represents her options accurately, but is assigned the wrong utilities because it is falsely assumed that she 

maximises expected utility when in fact she “[follows] a moral code [while] suspending the rational calcu-

lus” (251). As he puts it, “People may be induced by social codes of behaviour to act as if they have different 

preferences from what they really have” (258). 
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say, push the button was an option available for her to choose—she may well have chosen 

leave the button alone, had she been aware of the possibility. 

Generalising: if the set of act-functions over which ≽ is defined is supposed to model 

the range of acts (or intentions to act) actually available to S, by virtue of characterising 

the actual causal profiles of those acts (intentions), then ℬel and 𝒟es are all but guaran-

teed to misrepresent S’s credences and utilities inasmuch as S misrepresents what options 

are available to her and/or what outcomes they might lead to. To be sure, a set of act-

functions can be used to represent a decision situation as it really is, but if the aim is to 

arrive at descriptively plausible ℬel and 𝒟es functions, then they should only be used to 

represent the situation as the agent represents it.80 

Such misrepresentation would not arise—at least, assuming that the agent is in fact an 

expected utility maximiser—if there were a way to guarantee the following two condi-

tions:  

 

(1)  Each of the act-functions over which ≽ is defined accurately models both some act’s 

actual causal profile and how the agent conceives of its profile 

(2)  The agent knows (i.e., with certainty) exactly which acts she can and cannot perform, 

if she were to intend as such 

 

Perhaps, as was noted above, if we understand preferences as relations over intentions to 

act, then we might be on solid ground in supposing that rational agents have full and 

reliable access to what options are available to her—though (2) still seems implausible 

for non-ideal agents. But moreover, regardless of whether we take the agent to be deciding 

between acts or intentions, it’s doubtful that how an agent might represent the causal 

profiles of the things she might do will always coincide with the facts of matter. 

There may be a special case with ideally rational agents, where we could construct 𝒜 

in such a manner so as to guarantee both (1) and (2). That is, suppose that states are 

dependency hypotheses (as characterised in §5.2.2), and that ideally rational agents are 

always fully aware of exactly what acts (or intentions to act) are available for choice. 

 
80 See (Hausman 2000) for a brief articulation of roughly the same point as applied to revealed prefer-

ence theory; and (Sen 1993, 502) for a related discussion that distinguishes between ‘extensional’ and ‘in-

tentional’ (sic) specifications of options. Hausman asserts that “The inverse inference from choice to pref-

erence depends … on premises concerning beliefs. Indeed, opposite beliefs and preferences may lead to 

exactly the same choice” (103). He does not, however, offer a reconciliation of this with the common folk-

lore that representation theorems like Savage’s demonstrate that some patterns of choices can only be the 

result (via expected utility maximisation) of a unique set of credences and utilities. The reconciliation is 

afforded by recognition of the fact that Savage’s representation is only unique given a choice of 𝒪 and 𝒮, 

and given a particular correspondence of act-functions to the actual objects of choice. The mistake is to 

think that act-functions pick out objects of choice by describing their actual patterns of outcomes. 
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Since every act’s outcomes are built into the very specification of each dependency hy-

pothesis, it is plausible to suppose that a function from a set 𝒮 of dependency hypotheses 

to 𝒪 could accurately represent not only the act’s actual causal profile but also at least 

one way that an ideally rational agent might conceptualise that act’s pattern of possible 

outcomes. We would, of course, still need an appropriate and objective specification of 

𝒪, and a representation theorem that is well-suited for the use of dependency hypotheses 

as states (we have seen that Savage’s is not), but there are bigger problems here—namely, 

that this special case will not help us much with non-idealised subjects. 

The ideally rational agent never makes logical mistakes, and she is able to keep in 

mind the full range of dependency hypotheses and consider the relative likelihoods of 

such things. The ordinary subject cannot do such things. Suppose our decision situation 

is such that there are only five available acts and four possible outcomes—in which case 

there are 45 = 1024 dependency hypotheses to consider (and 21024 events). For any real-

istic decision situation, the range of dependency hypotheses is vast and each one is ex-

traordinarily complicated. To expect of the average agent that they could accurately rep-

resent each act’s pattern of possible consequences in this manner is to expect far too 

much—we don’t even come close to representing our decision situations in this way.81 It 

is rare enough that decision problems are formulated with states or events which are gen-

uinely act-independent and outcome-functional (which they must be if the states are de-

pendency hypotheses). It is even rarer that all the relevant possibilities are taken into 

account, with each act’s actual and complete causal profile being faithfully represented.  

The ordinary agent also takes a very coarse-grained conception of pattern of outcomes 

that her acts (or intentions to act) might have, and the exact nature of that conception 

seems to be highly variable. Sometimes factors relevant to a decision are simply forgotten 

about or ignored for whatever reason, leading to variations choices between acts despite 

no change in the underlying credences and utilities. There are also more systematic phe-

nomena to consider here. For example, it is very plausible on empirical grounds that what 

aspects of an act’s known outcomes are salient to a decision-maker is highly context-

dependent (Kahneman and Tversky 1979, Tversky and Kahneman 1981, Dietrich and List 

2013). A healthcare worker might know that giving a population of 1000 terminally ill 

patients a particular treatment will cure 75% of them but kill the rest, and in one context 

focus on the positive aspect of the outcome (750 lives saved) and so proceed with the 

treatment, while in another context focus on the negative (250 killed) and so choose 

against it. To account for this variation, we don’t need to posit that the agent’s underlying 

utilities for the relatively specific outcome save 750 and kill 250 changes from context to 

context. Instead, what seems to happen is that she attaches a high utility to the more 

 
81 Letting the 𝒮 be a collection of dependency hypotheses also only highlights the problems discussed 

in §5.3. There are many more propositions that we can have credences towards than can be expressed as 

disjunctions of dependency hypotheses. 
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coarse-grained prospect of saving 750 people, a low utility to killing 250 people, and 

contextual factors cause her to represent the act’s outcome in one of these two different 

ways—thus leading to different patterns of preferences regarding the act dependent on 

context without a change in her credences or utilities. 

Savage himself seemed well aware of these issues—hence he distinguished “small 

world” decision problems from “grand world” problems (see his 1954, 16, 82ff), where 

the latter is essentially a decision situation modelled such that all relevant distinctions 

between states, outcomes, and acts have been made. The grand world representation of a 

decision-making context makes use of incredibly fine-grained states and outcomes, while 

small world representations rely on less specific ways of carving up 𝒮 and 𝒪. Ordinary 

subjects, Savage realised, could not hope to contemplate a grand world decision problem, 

and instead relied on much more coarse-grained (or small world) conceptions of their 

situation. In Savage’s system, act-functions might represent acts within a small world or 

a grand world conceptualisation. But the distinction between small and grand worlds will 

not help us with our present problems, as it seems unlikely that we could know how 

coarse-grained a conception the agent has taken of her circumstances without having prior 

access to her mental states. The only objective representation of a decision situation is the 

maximally fine-grained one, which ordinary agents are incapable of conceptualising in 

all its detail. 

From an outsider’s perspective, it may be possible to specify what acts are within S’s 

physical capabilities, and with a detailed enough knowledge of physics, exactly what the 

causal profile of each such act actually is—all without peaking inside S’s head. But this 

is not the kind of information we require if we are going to model why S made the choice 

she did. To understand her choices, it will not do to model her range of options as they 

actually are, if how they actually are is distinct from how she takes them to be. And this 

requires access to how S represents her present decision situation, which isn’t the kind of 

information we can have from the outside. 

5.5 Summary 

I have argued that the biggest concerns for theorems within the Savage paradigm originate 

with the use of act-functions as the basic relata of ≽—ironically so, given that it is because 

≽ is defined over act-functions that Savage’s framework is so frequently used. Many in 

the behavioural sciences find this feature of the framework particularly attractive. Indeed, 

Fishburn criticises Jeffrey’s representation theorem—where ≽ is defined over an algebra 

of propositions—on the basis that it “blurs the often useful distinctions among acts, con-

sequences, and other entities that appear in other [multi-set] theories” (Fishburn 1981, 

186, cf. Bolker 1967, 335). 

Part of this attraction is due to a latent methodological behaviourism which still per-

sists today, according to which it will not do to simply ask a subject what her credences 
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and utilities are: the only accurate measure of such things can come from observation of 

her choices between acts. (See Gul and Pesendorfer 2008 for a recent defence of this 

idea.) But even foregoing methodological behaviourism, there is the widely-held idea that 

decision theory is about acts, and so ≽ must be construed behaviourally and its basic 

relata formalised accordingly. However, we have seen that any representation theorem 

which appeals to act-functions will be sub-optimal for the purposes of characterisational 

representationism. To close this chapter, I will summarise the issues raised in this chapter 

by their relation to the desiderata established in §3.4.5. 

There are, first of all, a number of issues which centre on the apparently crucial appeal 

to imaginary act-functions. On the one hand, it seems unlikely that any interesting repre-

sentation result can be achieved without imposing some rather strong structural require-

ments on the space of act-functions, 𝒜—requirements which seem incompatible with 

taking 𝒜 to be a formal representation of a space of available acts, 𝒜’. This makes the 

behavioural interpretation of ≽ highly problematic. Formally, ≽ must be defined on a set 

with structural properties simply not possessed by 𝒜’, the supposed basic objects of our 

behavioural preferences. This is in conflict with desideratum (1a), that a theorem’s pref-

erence conditions should be satisfiable tout court. On the other hand, it may be possible 

to re-interpret 𝒜 as representing one of the following: 

 

(i)  A set of imaginable acts 

(ii)  A set of (im)possible patterns of outcomes 

(iii)  The union of 𝒜’ with a set 𝒜* of purely fictional entities 

 

However, each option gives rise to issues relating to desideratum (1) more generally, and 

(i) and (ii) additionally require giving up on any non-intentional interpretation of ≽ 

(which leads to issues with desideratum (5)). It may turn out, however, that the notion of 

coherent extendibility can be of service to characterisational representationism here—

though it is not obvious if what results will be in conflict with (3). 

More worrying is the fact that Savagean theorems seem incapable of satisfying desid-

eratum (2), that ℬel and 𝒟es should provide plausible models of the relevant agents’ total 

credence and utility states. Savage’s own theorem is already problematic on this front by 

virtue of being a CEU theorem (see desideratum (2d)). However, there are still deeper 

worries here. The ℬel and 𝒟es functions that any Savage-like theorem might supply us 

with have impoverished domains, putting them in conflict with desideratum (2c). Fur-

thermore, the domains of ℬel and 𝒟es are wholly disjoint, giving rise to a conflict with 

(2a). 

Furthermore, although we did not discuss the point in any detail, a glance at any of the 

examples given in Appendix B will highlight that contemporary Savage-like theorems 

also tend to come into conflict with (2b), and (2d), at least where 𝒮 is a partition of some 
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possibility space. Most Savage-like theorems require that ℬel has at least as much struc-

ture as a Choquet capacity, if not a probability function, and such functions are not well-

suited for the representation of ordinary agents’ credences. One might try to alleviate 

these worries by letting 𝒮 include impossible states (as noted in §4.3), but doing so would 

only put more pressure on the already problematic interpretation of Savage’s act-func-

tions—for instance, the issues surrounding imaginary act-functions will only be magni-

fied where 𝒮 includes both possible and impossible states of affairs. 

Finally, it seems that the interpretation of act-functions must be given partially in terms 

of how agents represent the circumstances they find themselves in, raising worries about 

whether desideratum (4) can be satisfied by any theorem which appeals to act-functions. 

That is, it seems that the basic notions involved in the interpretation of any such theorem 

cannot be understood independently of the agent’s overall doxastic state, nor of what she 

cares about. A failure to satisfy (4) also implies the failure to satisfy the naturalistic de-

sideratum (5). 

It seems, therefore, safe to say that Savage’s framework stands at odds with character-

isational representationism, and even more so with the naturalisation project—despite its 

origins in mid-twentieth century behaviourism. Another kind of representation theorem 

will need to be found. 



 

 

 

 

CHAPTER SIX 

Lottery-Based and Monoset Theorems 

This chapter focuses on two rather different kinds of representation theorem, each of 

which raise distinctive issues in relation to characterisational representationism. We begin 

with what I will call lottery-based theorems (§6.1), and follow with the monoset theorems 

of Ethan Bolker and Richard Jeffrey (§6.2). 

6.1 Lottery-based theorems 

The class of lottery-based theorems comprises those which appeal to what have become 

known as extraneous scaling probabilities—in a sense to be made more precise below, 

these theorems require us to essentially plug in some credence values by hand, rather than 

deriving them from preferences. One of the two main complaints that I will draw in this 

section results from this fact, and has often been raised over the past several decades. 

The earliest lottery-based theorem originates with John von Neumann and Oskar Mor-

genstern’s (henceforth: VNM) seminal Theory of Games and Economic Behaviour 

(1947), which formed the basis of the theorem developed by Anscombe and Aumann 

(henceforth: AA) in their ‘A Definition of Subjective Probability’ (1963). What is now 

known as the AA framework is the basis for a large number of recent representation the-

orems. For example, the AA framework is used in the theorems of (Fishburn 1970, 1973, 

1975, 1982), (Hazen 1987), (Gilboa and Schmeidler 1989), (Blume, Brandenburger et al. 

1991), (Maccheroni, Marinacci et al. 2006), (Seo 2009), (Neilson 2010), and (Schneider 

and Nunez 2015). The theorems of (Pratt, Raiffa et al. 1965), (Balch and Fishburn 1974), 

(Armendt 1986), and a number of others are based around their own distinctive systems, 

but like VNM’s and AA’s theorems, each appeals to extraneous scaling probabilities. 

6.1.1 Anscombe and Aumann’s theorem 

Before I outline the VNM and AA theorems, it will be helpful to begin with an informal 

characterisation of lotteries, which form the intended interpretation of the basic relata of 

both theorems’ ≽. As AA describe it, a lottery is: 
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… a device for deciding which prize in [a set of outcomes 𝒪] you will receive, on the basis 

of a single observation that records which one of a set of mutually exclusive and exhaustive 

uncertain events took place. (1963, 200) 

 

AA imagine their agent as having a choice between a number of free lottery tickets, where 

the possession of any such ticket enters her into a draw for one of a finite number of 

prizes, the draw itself being dependent on some way that the world may turn out to be. It 

is, of course, implicitly assumed that the agent is under no illusions or misconceptions 

regarding the prize conditions for any of the lotteries she may choose to enter. (This is 

analogous to the assumptions required of agents and acts noted in §5.4.) 

AA distinguish two kinds of lotteries on the basis of the kind of uncertainty involved 

in the lottery’s conditions. The first kind they refer to as roulette lotteries; these are lot-

teries where the objective chances associated with each of the prizes being won are known 

(with certainty) to the agent. So, for instance, assume that a 38-pocket roulette wheel is 

spun, and let {P1, …, P38} be the ball lands in pocket 1, …, the ball lands in pocket 38. 

The ball must land in one pocket or another, so P1 through to P38 are mutually exclusive 

and exhaustive. AA then imagine a lottery with prize o1 if P1 turns out to be true, o2 if P2 

turns out to be true, and so on. They assume that any ordinary decision-maker will know 

that each proposition in {P1, …, P38} has an objective chance 1/38 of coming true, and 

will set her credences accordingly (cf. the 'Principal Principle', Lewis 1980b). Other kinds 

of roulette lotteries might include those based on the toss of a fair coin, the roll of an n-

sided die, or the occurrence of a quantum event with a known probability distribution. 

The second kind of lottery is a horse lottery, wherein the objective chances associated 

with each of the prizes being won aren’t known—either due to an ignorance of the 

chances on the decision-maker’s behalf, or because there are no objective chances asso-

ciated with the lottery’s win conditions. 

 

On the other hand, [unlike roulette lotteries,] it is possible that chances [for a lottery’s out-

comes] cannot be associated with the uncertain events in question, or that the values of 

such chances are unknown; for example, this would be so if we were observing a horse 

race. (1963, 200) 

 

AA’s idea is that while ordinary, rational subjects can be presumed to know the objective 

chances associated with roulette wheels, they don’t know the chances associated with 

each horse in a race coming first. Given a five-horse race, {Horse one wins, …, Horse 

five wins} partitions the relevant space of possibilities, but most agents would not think 

that each proposition has a 1/5 chance of becoming true: some of the horses are, presum-

ably, objectively better runners than their competitors. Other kinds of horse lotteries 

would include those based on, say, whether it rains in Sydney on the 15th of May, 2018; 

or whether a jar contains n jelly beans. 
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The VNM theorem is based solely around preferences over roulette lotteries. AA re-

gard this situation as unsatisfactory. Because roulette lotteries take the associated cre-

dence values as extraneously given, there is no sense in which they can help us to char-

acterise what it is to have such-and-such credence states. The goal of AA’s ‘definition of 

subjective probability’ is to use preferences over both kinds of lotteries to derive credence 

values for the propositions used in the formulation of horse lotteries—that is, propositions 

such that their objective chances are not known. But before we can understand AA’s pro-

posal, we will first need to look at VNM’s theorem. 

Two definitions are needed to begin with. The first gives us the formalisation of a 

roulette lottery: 

 

Definition 6.1: Lottery-function 

A function ℒ: 𝒪 ↦ [0, 1] is a lottery-function iff ℒ(o) = 0 for all but a finite number of o ∈ 

𝒪, and ∑   
𝑶 ℒ(o) = 1 

 

A lottery-function on 𝒪 is supposed to represent a roulette lottery which associates every 

outcome in 𝒪 with a particular chance, such that the chances sum to one. There is no 

mention of propositions to be found in Definition 6.1, but they figure essentially in the 

interpretation of any given lottery-function. The idea is that since the objective chances 

are assumed to be known, outcomes can be associated with chance values directly rather 

than being associated with the propositions which have those values. We must understand 

chance values as attaching to some member of a set of mutually exclusive and exhaustive 

propositions, however—without this, a lottery-function would just be a meaningless pair-

ing of outcomes with numbers. We can also now precisely define a lottery-based theorem 

as any theorem in which lottery-functions can be found amongst the basic formal ele-

ments of the theorem.  

Next, to formalise the set of all possible roulette lotteries with outcomes taken from a 

set of outcomes 𝒪, we will need the notion of a mixture set: 

 

Definition 6.2: Mixture set 

A set ℳ is a mixture set iff, for any x, y ∈ ℳ and any λ ∈ [0, 1], we can associate another 

element of ℳ, to be designated (x, λ, y), such that, for all x, y ∈ ℳ and all λ, μ ∈ [0, 1], 

(i) (x, 1, y) = x 

(ii) (x, λ, y) = (y, 1 – λ, x) 

(iii) ((x, λ, y), μ, y) = (x, λμ, y) 

 

We can now designate the set of all lottery-functions on 𝒪 as the mixture set ℳ𝒪, under 

the interpretation that (ℒ1, λ, ℒ2) is the lottery-function ℒ3 such that: 
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ℒ3(o) = λ.ℒ1(o) + (1 – λ).ℒ2(o), for all o ∈ 𝒪 

 

Suppose that ≽ is defined on ℳ𝒪, where ≽ can be understood either behaviourally as a 

disposition to choose one lottery ticket over another, or mentalistically as a preference to 

be holding one ticket over another. The VNM theorem is then quite straightforward, with 

three simple, necessary preference conditions—namely, for all ℒ1, ℒ2, ℒ3 ∈ ℳ𝒪, 

 

VNM1 ≽ on ℳ𝒪 is a weak ordering 

VNM2 If ℒ1 ≻ ℒ2 and 0 < λ < 1, then (ℒ1, λ, ℒ3) ≻ (ℒ2, λ, ℒ3) 

VNM3 If ℒ1 ≻ ℒ2 ≻ ℒ3, then for some λ, γ ∈ (0, 1), (ℒ1, λ, ℒ3) ≻ ℒ2 and ℒ2 ≻ (ℒ1, γ, ℒ3) 

 

VNM are then able to prove the following: 

 

Theorem 6.1: von Neumann and Morgenstern’s theorem 

<ℳ𝒪, ≽> satisfies VNM1–VNM3 iff there exists a real-valued function 𝒟es on ℳ𝒪 such 

that, for all ℒ1, ℒ2, (ℒ1, λ, ℒ2) ∈ ℳ𝒪, 

(i) ℒ1 ≽ ℒ2 iff 𝒟es(ℒ1) ≥ 𝒟es(ℒ2) 

(ii) For all λ ∈ [0, 1], 𝒟es((ℒ1, λ, ℒ2)) = λ.𝒟es(ℒ1) + (1 – λ).𝒟es(ℒ2) 

Furthermore, 𝒟es is unique up to positive linear transformation 

 

Importantly, 𝒟es can be defined on 𝒪 by letting 𝒟es(o) = 𝒟es(ℒ), where ℒ is the trivial 

lottery-function which assigns a chance of 1 to o—the idea being that the lottery ℒ repre-

sents presumably has exactly the same utility as o: it is effectively just a guarantee that o. 

So, for every lottery ℒ ∈ ℳ𝒪, 

 

𝒟es(ℒ) = ∑  𝑶 ℒ(o).𝒟es(o) 

 

We can also extend ≽ to 𝒪 by assuming that for all o, o* ∈ 𝒪, 

 

o ≽ o* iff 𝒟es(o) ≥ 𝒟es(o*) 

 

So much for von Neumann and Morgenstern’s theorem, let us now look at Anscombe and 

Aumann’s development. 

The basic trick to AA’s theorem is a dual application of Theorem 6.1 to two preference 

relations ≽ and ≽* (defined on disjoint sets of lottery-functions), with the addition of two 

further preference conditions to connect ≽ and ≽* together. ≽ is identical to VNM’s 
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relation, and defined on the set ℳ𝒪. On the other hand, ≽* is supposed to represent pref-

erences between roulette lotteries with horse lotteries as prizes, where those horse lotter-

ies have yet more roulette lotteries as prizes. 

Formally, horse lotteries are functions from a set 𝒮 of states—where these states are 

understood basically as Savage understood them—into ℳ𝒪. Let us refer to such functions 

as horse-functions, and let ℋ = {𝒽1, 𝒽2, 𝒽3, …} be the set of all horse-functions (gener-

ally: ℋ ⊆ ℳ𝒪𝒮). So, every 𝒽 ∈ ℋ assigns some lottery-function ℒ ∈ ℳ𝒪 to each s ∈ 𝒮. 

As with Savage’s 𝒜, ℋ will include constant functions which assign the same ℒ to every 

state in 𝒮. If 𝒽 assigns a trivial lottery-function to each state, then it is in effect just one 

of Savage’s act-functions. However, the ‘prizes’ associated with a horse-function may 

include any lottery-function in ℳ𝒪. 

Let ℳℋ be the set of all lottery-functions defined on ℋ. AA’s preference conditions 

are much simpler than Savage’s, though this is offset by the far greater complexity in-

volved in the characterisation of ℳ𝒪 and ℳℋ. The first two preference conditions are 

easy to state: 

 

AA1 ≽ on ℳ𝒪 and ≽* on ℳℋ satisfy VNM1–VNM3 

AA2 There are o, o* ∈ 𝒪 such that o ≻ o* and for all o+ ∈ 𝒪, o ≽ o+ ≽ o*  

 

Given Theorem 6.1, we know from AA1 that there will be two utility functions 𝒟es and 

𝒟es* which T-represent ≽ on ℳ𝒪 and ≽* on ℳℋ respectively. AA2 is included for math-

ematical ease; it simply asserts that there are at least two distinct outcomes o and o′ in 𝒪 

such that o is the most desired outcome, o′ is the least desired outcome, and the agent is 

not indifferent between them. 

The next two preference conditions will require some further notation to express. First, 

we will represent an arbitrary lottery-function ℒ, with prizes x1, …, xm in either 𝒪 or ℋ, 

as 〈λ1, x1│…│λm, xm〉, where λ1, …, λm ∈ (0, 1] and ∑  λi = 1. Thus, 〈λ1, x1│…│λm, xm〉 is 

supposed to represent the roulette lottery which has a λ1 chance of resulting in x1, a λ2 

chance of resulting in x2, and so on. The trivial lottery-function which assigns a chance 

of 1 to x being won is then represented 〈1, x〉. Secondly, we will represent an arbitrary 

horse-function 𝒽 as follows: if 𝒽 may result in exactly n different lottery-functions ℒ1, 

…, ℒn at the events E1, …, En respectively, then we will represent it ⟦ℒ1, …, ℒn⟧. Thus, 

⟦ℒ1, …, ℒn⟧ is supposed to designate the horse lottery with the prize ℒ1 if any s ∈ E1 is 

true, ℒ2 if any s ∈ E2 is true, and so on, where {E1, …, En} is a partition of 𝒮.82 

 
82 Because of their similarity to Savage’s act-functions, a horse-function can also be represented along 

the same lines as act-functions were in Chapter 5; that is, with 𝒽 being denoted (E1, ℒ1│…│En, ℒn) iff 𝒽(s) 

= ℒ1 for all s ∈ E1, 𝒽(s) = ℒ2 for all s ∈ E2, and so on. I have altered the notational scheme to improve the 

legibility AA4, which would be rendered (even more) opaque under the earlier scheme. 
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We can now state AA’s final two preference conditions, which are supposed to hold 

for all lottery-functions in ℳℋ: 

 

AA3 If ℒi ≽ ℒi′, then 〈1, ⟦ℒ1, …, ℒi, …, ℒn⟧〉 ≽* 〈1, ⟦ℒ1, …, ℒi′, …, ℒn⟧〉 

AA4 〈λ1, ⟦ℒ1
1, …, ℒ1

n⟧│…│λm, ⟦ℒm
1, …, ℒm

n⟧〉 ∼* 〈1, ⟦〈λ1, ℒ1
1│…│λm, ℒm

1〉, …, 〈λ1, 

ℒn
1│…│λm, ℒm

n〉⟧〉 

 

AA3 says that if two horse-functions 𝒽 and 𝒽′ are identical except that at some event E, 

and 𝒽(s) = ℒi and 𝒽′(s) = ℒi′ for all s ∈ E, then the agent′s preferences between 𝒽 and 𝒽′ 

are determined by her preferences between ℒi and ℒi′. While all but opaque to merely 

human eyes, AA4 is picturesquely described by AA as saying that “if the prize you re-

ceive is to be determined by both a horse race and a spin of a roulette wheel, then it is 

immaterial whether the wheel is spun before or after the race” (1963, 201). 

AA note that their AA3 implies that if o and o′ are the most and least preferred out-

comes respectively, then the trivial lottery-function in ℳℋ which is guaranteed to result 

in o (i.e., 〈1, ⟦〈1, o〉⟧〉) will be the most preferred element of ℳℋ, while the trivial lottery-

function 〈1, ⟦〈1, o′〉⟧〉 guaranteed to result in o′ will be the least preferred element of ℳℋ. 

They therefore propose to normalise 𝒟es* on ℳℋ by letting 𝒟es*(〈1, ⟦〈1, o〉⟧〉) = 1, and 

𝒟es*(〈1, ⟦〈1, o′〉⟧〉) = 0. Likewise, they set 𝒟es(〈1, o〉) = 1 and 𝒟es(〈1, o′〉) = 0. Given 

this, we can now state AA′s theorem: 

 

Theorem 6.2: Anscombe and Aumann 

If ≽ on ℳ𝒪 and ≽* on ℳℋ satisfy AA1–AA4, then there exists two normalised utility 

functions, 𝒟es: ℳ𝒪 ↦ ℝ and 𝒟es*: ℳℋ ↦ ℝ, and a unique probability function ℬel: ℰ ↦ 

[0, 1], such that for all ℒ1, ℒ2 ∈ ℳ𝒪 and all ℒ′1, ℒ′2, ⟦ℒ1, …, ℒn⟧ ∈ ℳℋ, 

(i) ℒ1 ≽ ℒ2 iff 𝒟es(ℒ1) ≥ 𝒟es(ℒ2) 

(ii) ℒ′1 ≽* ℒ′2 iff 𝒟es*(ℒ′1) ≥ 𝒟es*(ℒ′2) 

(iii) 𝒟es*(⟦ℒ1, …, ℒn⟧) = ∑  𝑛
𝑖 ℬel(Ei).𝒟es(ℒi) 

 

Because ≽ and ≽* are defined on disjoint sets, AA point out that there would be no harm 

done in restating their theorem using a single preference relation ≽+ defined on ℳ𝒪 ∪ 

ℳℋ, by simply letting ≽+ equal ≽ on ℳ𝒪 and ≽* on ℳℋ. 

6.1.2 Critical discussion 

The similarity between lottery-functions and horse-functions on the one hand, and act-

functions on the other, should make it clear that many of the same issues which arose for 

Savage’s theorem have close analogues for AA’s and similar theorems. I will briefly out-

line these, before moving on to the problems that arise specifically from appealing to 

lottery-functions. Before we begin, though, it’s worth noting that the interpretation of 
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VNM’s or AA’s basic objects of preference as lotteries is not forced upon us by their 

formalism. Indeed, it is fairly common to treat each of their ‘lotteries’ as a variation on 

the basic idea of an act-function—after all, both AA’s ‘lotteries’ and Savage’s act-func-

tions are ultimately just pairings of uncertain events with outcomes. The exact interpre-

tation we assign to ℳ𝒪, ℳℋ, and ℋ is largely immaterial for the purposes of my critical 

discussion, so I will follow AA in describing the relata of ≽ as lotteries.  

First of all, AA make essential use of trivial lottery-functions and constant horse-func-

tions, and this gives rise to something very much like the problem of constant acts as it 

appears in Savage’s system (§5.2)—a lottery-function 〈1, ⟦〈1, o〉⟧〉 is, for all intents and 

purposes, just a constant act-function o. Furthermore, an analogue of the problem dis-

cussed in §5.4 can be raised for the interpretation of each of ℳ𝒪, ℳℋ, and ℋ: to whatever 

extent these sets represent lotteries (or any other objects of choice), they must represent 

them as the agent takes them to be rather than just as they in fact are, else the derived ℬel 

and 𝒟es functions are all but guaranteed to misrepresent decision-makers’ credences and 

utilities. Finally, there is the question of whether AA’s ℬel and 𝒟es functions are defined 

on a domain with the right kind of structure to adequately represent ordinary agents’ cre-

dences and utilities (§5.3). Given a lottery-based interpretation, the states in 𝒮 are no 

longer required to be act-independent—but they should instead be, in some relevant 

sense, lottery-independent, as well as outcome-independent. This in turn implies that the 

states in 𝒮 are independent with respect to each of the propositions which characterise the 

win conditions for any of the lotteries in ℳ𝒪. Thus, ℬel can only model of credences 

specifically with respect to those propositions towards which the objective credences 

aren’t known.83 

A complete model of the agent’s credences would presumably take the form of an 

extension of ℬel—call it ℬel+—which equals ℬel on ℰ but also represents credence values 

for those propositions not in ℰ for which the objective chances are known. Call the set of 

propositions towards which the agent knows the objective chances 𝒫𝒪; because (ℰ ∩ 𝒫𝒪) 

= ∅, the imagined extension of ℬel should not be problematic. However, we will need 

some independent means of fixing ℬel+ on 𝒫𝒪—and this is something which cannot be 

given by any lottery-based theorem. 

We are led, then, to the most commonly recognised problem with lottery-based theo-

rems in relation to characterisational representationism: the credences values associated 

with a certain large subset of propositions (𝒫𝒪) must be given independently. AA implic-

itly assume that the objective chances associated with certain propositions (such as the 

toss of a fair coin will land heads and the ball on the roulette wheel will land in the first 

 
83 It should also be noted that while most lottery-based theorems do make use of AA’s horse-functions 

(i.e., functions from 𝒮 to ℳ𝒪), this is not essential to the lottery-based framework—for example, Armendt’s 

(1986) theorem is lottery-based, but has preferences which are defined between arbitrary propositions and 

lottery-functions with propositions as ‘prizes’. 
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pocket) are common knowledge. But an appeal to a lottery-based theorem leaves us with-

out an explanation of where these credences come from. At best, a lottery-based theorem 

could be used to construct a partial model of credences—but only with respect to events 

in ℰ (which is already highly impoverished), and only if certain conditions hold of the 

agent’s credences towards the propositions in 𝒫𝒪. 

It seems unlikely, however, that any theorem like AA’s would even be useful for the 

limited task of characterising credences for the propositions not in 𝒫𝒪. In particular, it 

seems prima facie plausible that if we were able to given an account of what it is to have 

a credence of x in P, where x might take any value in [0, 1] and P might be any proposition 

in a rather large set 𝒫𝒪, then that same account should apply to any propositions whatso-

ever. There seems to be no good reason to think that the metaphysics of credences should 

be disjunctive, in the sense of there being one account of credences towards the proposi-

tions in 𝒫𝒪, and another for propositions outside of 𝒫𝒪 (cf. §5.3.1). 

Compounding this problem is, I think, an even bigger concern. The lottery-functions 

in ℳℋ are incredibly unintuitive constructions, being supposed to represent roulette lot-

teries with horse lotteries as prizes, which in turn have roulette lotteries with prizes in 𝒪 

as prizes! It is immensely implausible that anyone’s credences and utilities should be char-

acterised primarily in terms of their preferences over such things, if we even have prefer-

ences over such things. Such an odd domain for ≽ is surely the wrong place to look if we 

are seeking a plausible basis for characterising credences and utilities. Perhaps a ‘disjunc-

tivist’ account of credences could be defended, but not if one of those disjuncts involves 

preferences over ℳℋ. Preferences over lotteries upon lotteries upon lotteries just don’t 

seem like the kinds of things that we should want to base an account of credences and 

utilities upon. 

AA themselves offer an inadequate justification for referring to objective chances and 

preferences over roulette lotteries. In particular, they suggest that the notion of credence 

might be “even obscurer than chance and that progress [with respect to characterising 

credences] should preferably be from the more familiar to the less familiar, rather than 

the other way around” (1963, 203). Thus they propose to define a person’s credences in 

terms of objective chances. It is obvious, though, that AA do not reduce the notion of 

credence to the notion of chance, despite their claims to have done so (e.g., 199-200). It 

is immensely implausible that an agent’s preferences over roulette lotteries are directly 

determined by the objective chances which are associated with those lotteries’ win con-

ditions. Rather, just as is the case with horse lotteries, a rational agent prefers one roulette 

lottery ℒ over another ℒ′ if her credences are such that ℒ is subjectively more likely to 

result in the better outcome. The only difference between roulette lotteries and horse lot-

teries is that in the former case, the objective chances associated with the lottery’s win 

conditions are assumed to be known (and the agent’s credences are set accordingly). Note, 

of course, that this assumption is unlikely to be true in general: ordinary agents make 
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mistakes, and may fail to accurately represent the chances associated with the lotteries on 

offer to them. 

AA don’t trade one obscure notion (credence) for a less obscure notion (chance)—and 

if they are right in thinking that the notion of credence is obscure, then their theorem does 

little to remove that obscurity. Characterisational representationism will need a much 

stronger foundation than a lottery-based theorem. Unfortunately, that means doing with-

out a very great many of the theorems which have been developed over the past few 

decades. 

6.2 Monoset theorems 

Each of the theorems considered thus far have been multiset theorems—that is, the objects 

of credence, utility, and preference are formally represented by distinct sets (e.g., in Sav-

age: ℰ, 𝒪, and 𝒜; and in Anscombe and Aumann: ℰ, 𝒪, and ℳ𝒪 ∪ ℳℋ). By contrast, the 

monoset theorem to be considered here has its objects of credence, utility, and preference 

all drawn from a single set of propositions, 𝒫. 

The mathematical basis for the theorem that we will now consider was first developed 

by Bolker (1966, 1967), and its application in decision theory was extensively discussed 

in Jeffrey (e.g., 1978, 1990). 

6.2.1 The Jeffrey-Bolker theorem 

We begin with a preference relation ≽ defined on a σ-algebra of propositions 𝒫, where 

propositions are understood as sets of worlds taken from some infinite space of worlds 

𝒲. The propositions in 𝒫 will be assigned credences and utilities in the final representa-

tion. Since ≽ is not defined on objects of choice (à la Savage) but on arbitrary proposi-

tions, it is best understood in the mentalistic sense. (For more on this, see also the discus-

sion in Chapter 9.) 

As with each of the other theorems we have looked at, monoset theorems involve a 

number of background structural and non-triviality conditions: 

 

MON0  For all P ∈ 𝒫, if P ∉ 𝒩, then there exists two non-empty propositions Q, Q′ ∈ 𝒫 

such that Q, Q′ ∉ 𝒩, (Q ∩ Q′) = ∅, and P = (Q ∪ Q′) 

MON1 For some R ∈ 𝒫, R ≻ (R ∪ ¬R) ≻ ¬R 

MON2 ≽ on 𝒫 is a weak ordering 

 

The purely structural condition MON0 specifies that the set of propositions 𝒫 – 𝒩 is 

bottomless, and thus infinite; the set 𝒩 to which it refers will be defined below. MON1 



 

149 

 

is required if any interesting representation of the agent’s preferences is to exist; the prop-

osition R that it mentions will be used to scale 𝒟es. 

Next, for all relevant propositions, 

 

MON3 If (P ∩ Q) = ∅ and P ≽ Q, then P ≽ (P ∪ Q) ≽ Q 

 

MON3 says something similar to MON1, though generalised to all disjoint pairs of prop-

ositions. Essentially, it requires that the utility of a disjunction of two incompatible prop-

ositions P and Q should sit somewhere weakly between the utilities of P and Q. 

The next preference condition is crucially important for the existence of the desired 

representation; in particular, failure to satisfy this condition results in a probabilistically 

incoherent ℬel function. 

 

MON4 If P ≽ P′ and if (P ∩ Q) = (P ∩ Q′) = (P′ ∩ Q) = (P′ ∩ Q′) = ∅, then either (i) 

¬(Q ≻ (P′ ∪ Q) ≽ (P ∪ Q) ≻ P ≽ P′ ≻ (P′ ∪ Q′) ≽ (P ∪ Q′) ≻ Q′), or (ii) Q ≻ (P′ 

∪ Q) ∼ (P ∪ Q) ≻ P ∼ P′ ≻ (P′ ∪ Q′) ∼ (P ∪ Q′) ≻ Q′ 

 

The basic role of MON4 is to similar to that of Savage’s condition SAV5; namely, it is 

used to connect ≽ with a relative credence relation ≽b on 𝒫 using a variation on Savage’s 

Coherence principle: 

 

Definition 6.3: Monoset coherence 

If P, P′, Q ∈ 𝒫, and (P ∩ Q) = (P′ ∩ Q) = ∅, then: 

(i)  P ≽b P′ if (Q ≻ (P′ ∪ Q) ≽ (P ∪ Q) ≻ P ≽ P′) or (P′ ≽ P ≻ (P′ ∪ Q) ≽ (P ∪ Q) ≻ 

Q)  

(ii) P ∼b P′ if (Q ≻ (P′ ∪ Q) ∼ (P ∪ Q) ≻ P ∼P′) or (P′ ∼ P ≻ (P′ ∪ Q) ∼ (P ∪ Q) ≻ 

Q) 

(iii) P ≻b P′ if (Q ≻ (P′ ∪ Q) ≽ (P ∪ Q) ≻ P ≽ P′) or (P′ ≽ P ≻ (P′ ∪ Q) ≽ (P ∪ Q) ≻ 

Q), provided at least one ≽ can be replaced by ≻ 

 

In light of this principle, MON4 effectively says that an agent’s preferences should never 

be such that for any P, P′ ∈ 𝒫, it’s not the case that both P ≽b P′ and P′ ≻b P. 

 The next few preference conditions require us to characterise a set of null proposi-

tions: 

 

Definition 6.4: Null propositions 

𝒩 = {P ∈ 𝒫: (P ∪ Q) ∼ Q for some Q ∈ 𝒫 such that (P ∩ Q) = ∅ and ¬(P ∼ Q)} 
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As with other definitions of nullity, the idea makes intuitive sense from a pragmatic stand-

point. If the agent is not indifferent between some pair of disjoint propositions P and Q, 

then she should only be indifferent between (P ∪ Q) and Q if she is entirely confident that 

P is false. We can then assume, given her degrees of belief, that the news that (P ∪ Q) is 

true is in effect just the news that Q is true. This idea is formalised in MON5: 

 

MON5 If P ∈ 𝒩, then (P ∪ Q) ∼ Q for all Q ∈ 𝒫 

 

The next three preference conditions ensure the existence of a countably additive proba-

bility function ℬel: 

 

MON6 (i) (P ∩ ¬P) ∈ 𝒩; (ii) if P ∈ 𝒩 and Q ∈ 𝒫, then (P ∩ Q) ∈ 𝒩; (iii) If {P1, P2, P3, 

…} is a countable subset of 𝒩, then the disjunction of {P1, P2, P3, …} is also in 

𝒩 

MON7  Any collection of pairwise incompatible propositions in 𝒫 – 𝒩 is countable 

MON8  Let {P1, P2, P3, …} be a countable set of pairwise incompatible propositions in 

𝒫 whose disjunction is P; then (i) if Q ≽ (P1 ∪ P2 ∪ … ∪ Pn) for all n, then Q ≽ 

P, and (ii) if (P1 ∪ P2 ∪ … ∪ Pn) ≽ Q for all n, then P ≽ Q 

 

MON6 is an obvious requirement if ℬel on 𝒫 is to behave like a probability function. The 

Archimedean axiom MON7 has the effect of ruling out infinitesimal probabilities, and 

MON8 ensures that ℬel is countably additive. 

The representation theorem can then be stated thus: 

 

Theorem 6.3: Jeffrey-Bolker theorem 

If MON0–MON8 hold of <𝒲, 𝒩, 𝒫, ≽>, then there exists at least one countably additive 

probability function ℬel on 𝒫 and a real-valued function 𝒟es* on the atomic elements w of 

𝒫, whose associated conditional expected utility 𝒟es on 𝒫 is such that for all P, Q, (P ∪ 

¬P) ∈ 𝒫, 

(i) 𝒟es(P) = ∑   
𝑾 ℬel(w|P).𝒟es*(w) 

(ii) 𝒟es(P ∪ ¬P) = 0 

(iii) 𝒟es(P) ≥ 𝒟es(Q) iff P ≽ Q 

Furthermore, the pair <ℬel, 𝒟es> is unique up to a fractional linear transformation 

 

Note that the representation involves two utility functions: 𝒟es* is defined only on the 

atomic elements of 𝒫, while 𝒟es is defined for all P ∈ 𝒫 and characterised in terms of 

ℬel and 𝒟es*. 

The uniqueness properties of this representational system are quite different than those 

we find in other CEU theorems. Neither ℬel, 𝒟es*, nor 𝒟es are unique; instead, the pair 
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<ℬel, 𝒟es> is unique up to a fractional linear transformation. 𝒟es is normalised such that 

𝒟es(R ∪ ¬R) = 0 and 𝒟es(R) = 1, for some proposition R satisfying MON1. Let inf be the 

greatest lower bound of the values assigned by 𝒟es, and let sup designate the least upper 

bound. Finally, let λ be a parameter falling between -1/inf and -1/sup. Then the fractional 

linear transformation <ℬelλ, 𝒟esλ> of <ℬel, 𝒟es> corresponding to λ is given by: 

 

ℬelλ(P) = ℬel(P).(1 + λ𝒟es(P)) 

𝒟esλ(P) = 𝒟es(P).((1 + λ) / (1 + λ𝒟es(P)) 

 

Interestingly, fractional linear transformations of a <ℬel, 𝒟es> pair can alter not only the 

absolute values that ℬel assigns to propositions, but also their relative values; i.e., differ-

ent possible representations of exactly the same system of preferences will sometimes 

disagree regarding which of two propositions has should be assigned a higher credence. 

More generally, an agent’s preferences on this kind of monoset framework do not typi-

cally determine a unique relative credence ordering ≽b on 𝒫. Jeffrey suggested that it 

would be possible to pin down a unique ℬel if ≽b were treated as a primitive relation on 

par with ≽, with its own set of conditions (e.g., in his 1974, 1983). Joyce (1999, 138ff) 

proved that this is possible. 

6.2.2 Critical discussion 

Jeffrey’s monoset theorem is one of the best-known amongst philosophers. Amongst 

other disciplines, however, the monoset framework is often considered problematic. As 

Fishburn puts it, 

 

Although well known in certain philosophical circles, Jeffrey’s work is infrequently cited, 

and by implication not widely known, in other disciplines that share the legacy of prefer-

ence and decision theory … A casual search of works on the foundations of decision and 

relational measurement in the fields of psychology, economics, statistics and management 

science indicates that if Jeffrey’s work is mentioned at all, it is likely to be in reference to 

The Logic of Decision, and then only to note that it proposes a theory of decision that differs 

from traditional paradigms. (1994, 136) 

 

There are, consequently, very few representation theorems based on an ontologically sim-

ilar framework. Two recent exceptions to this trend can be found in (Bradley 1998, 2007) 

and (Ahn 2008), and as noted above, Armendt’s (1986) theorem is ontologically similar 

to Jeffrey’s system in that it takes preferences to be defined on a set of propositions and 

the possible roulette lotteries that may be formed thereupon. To keep the discussion brief, 

I will focus my criticisms on Theorem 6.3—the main points to be discussed apply equally 

to the other theorems just mentioned. 
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As far as characterisational representationism is concerned, Theorem 6.3 seems to take 

us several steps in the right direction. In particular, it neither appeals to act-functions nor 

lottery-functions—two bugbears which we have seen create problems for the multiset 

theorems considered so far. Furthermore, the domain of its preference relation is not lim-

ited to some obscure class of entities (such as infinite conjunctions of counterfactuals or 

lotteries upon lotteries), but instead seems capable of encapsulating everything towards 

which we could have mentalistic preferences. Of course, a mentalistic construal of ≽ 

means that Theorem 6.3 fails to satisfy the naturalistic desideratum (5), but we have seen 

that the standard strategies for trying to formulate a theorem around the behavioural no-

tion of preference lead to far worse concerns for characterisational representationism. Fi-

nally, Theorem 6.3’s ℬel and 𝒟es are defined on precisely the same domain, a feature not 

shared by any of the multiset theorems we have considered so far (desideratum (2a)). 

Theorem 6.3 does, however, have some limitations; these I will note below, though 

first I want to briefly discuss one characteristic of Theorem 6.3 that I don’t take to be 

especially problematic—in particular, the theorem’s relatively weak uniqueness condi-

tions. These are often cited as a cause for concern, as though characterisational represen-

tationism must be based upon a theorem which comes with (at least) the Standard Unique-

ness Condition. But it’s difficult to see why this should be so. 

There are at least two (not mutually exclusive) strategies by which a proponent of 

characterisational representationism might attempt to deal with Theorem 6.3’s weak 

uniqueness results. First, one can appeal to information which goes beyond agents’ (actual 

or counterfactual) preferences. This further information can be used to narrow down the 

range of potential interpretations whenever a representation theorem does come with 

strong uniqueness conditions. For example, if the theorem’s ℬel function is non-unique, 

a principle like Charity might be used to constrain the set of available ℬel representations 

down to uniqueness (§4.2). Second, where a theorem supplies us with a restricted set of 

possible ℬel and 𝒟es representations, we might take the entire set as a model of the 

agent’s credences and utilities. After all, Theorem 6.3 does carry the implication that there 

is a unique set of <ℬel, 𝒟es> pairs (each related to the others by a fractional linear trans-

formation) such each such pair jointly T-represents ≽ on 𝒫. Perhaps, then, that unique 

set—the ‘representor’—might be used to jointly represent the agent’s credences and util-

ities: roughly, whatever is true of every ℬel in the set is true of the agent’s credence state 

(and likewise for their utilities). So, for instance, if every ℬel in the representor always 

assigns a higher value to P than to Q, then the agent’s credence in P is higher than her 

credence in Q. Something close to this suggestion was briefly discussed in §5.2.4, and the 

idea was raised by Jeffrey in his (1983). 

Neither of these two strategies comes without cost, of course. If the former is adopted, 

then the characterisation of credences and utilities must appeal to information that goes 

beyond the agent’s preferences; this may be considered too much for some die-hard ad-

vocates of a very strict form of preference functionalism. On the other hand, if the latter 
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strategy is adopted, then the very intuitive picture of an agent as an expected utility max-

imiser must be sacrificed for a rather more complex model involving the interaction total 

credence and utility states modelled by sets of ℬel and 𝒟es functions. Nevertheless, nei-

ther of these costs seems like a strong enough reason to reject the possibility of basing 

characterisational representationism on something like Theorem 6.3. 

If there is a serious problem with Theorem 6.3, it relates to whether its ℬel and 𝒟es 

functions (or sets thereof) can serve as accurate models of an ordinary agent’s credences 

and utilities (desideratum (2)). For one thing, the ℬel associated with Theorem 6.3 is al-

ways a probability function, which puts limits on the kinds of credence states that it can 

represent—though some of the issues here depend on whether the set 𝒲 is taken to be a 

set of possible worlds. If it is, then ℬel is limited to the representation of probabilistically 

coherent agents—and ipso facto incapable of representing the average person. The same 

is true of any representor set constructed solely from probability functions: for instance, 

every probability function 𝒫r built on a space of possible worlds will assign 0 to impos-

sible propositions, 1 to necessary propositions, and satisfies the property that if P ⊢ Q, 

then 𝒫r(P) ≤ 𝒫r(Q).  

It may, however, be possible to avoid this implication by letting 𝒲 be composed of 

both possible and impossible worlds (Nolan 1997), although taking this route may lead 

to other concerns (see, e.g., Bjerring 2013). Another problem, however—and one that an 

appeal to impossible worlds won’t help with—is that if ℬel is to be a probability function, 

then its domain 𝒫 must be closed under (at least finite) disjunctions, yet it may be too 

much to ask of ordinary agents that they have credences towards every disjunction P ∨ Q 

which can be formed from the propositions P and Q towards which they do have cre-

dences (desideratum (2c)). Worse still, in Jeffrey’s system, 𝒫 – 𝒩 is required to be a 

bottomless algebra, so ℬel and 𝒟es must be defined on a collection of ever-increasingly 

more specific propositions—propositions which quickly become far too specific for any 

ordinary agent to contemplate.84 And finally, 𝒟es(P) always equals the ℬel-weighted av-

erage utility of the various different ways that P might come true. It is implausible that 

ordinary agents’ utilities are so consistently rational in this way. 

I do not consider these problems to be especially devastating, at least if the task is to 

develop a version of characterisational representationism aimed solely at ideally rational 

agents. However, I think we can do better—in Chapter 8, I will develop a theorem which 

is ontologically very similar to Theorem 6.3, but with much less restricted ℬel and 𝒟es 

functions and a more plausible representation overall. Before getting to that, though, we 

 
84 Domotor (1978) proves a theorem similar to Bolker’s for the case where 𝒫 is finite. He relies, how-

ever, on a particularly strong condition that he calls projectivity, and his uniqueness condition is weaker 

than Theorem 6.3’s. 
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need to conclude our review of the representation theorems currently on offer for charac-

terisational representationism with the very first such theorem to have been developed: 

Frank Ramsey’s.  



 

 

 

 

CHAPTER SEVEN 

Ramsey and the Ethically Neutral Proposition 

In his posthumously published ‘Truth and Probability’, Frank Ramsey sketches a proposal 

for the empirical measurement of credences, along with a corresponding set of conditions 

for a (somewhat incomplete) representation theorem intended to characterize the prefer-

ence conditions under which this measurement process is applicable. Ramsey’s formal 

approach is distinctive, deriving first a utility function to represent an agent’s utilities, 

and then using this to construct their credence function. In specifying his measurement 

process and his conditions, however, Ramsey introduces the notion of an ethically neutral 

proposition, the assumed existence of which plays a key role throughout Ramsey’s sys-

tem. 

The existence of such propositions has often been called into question. Ramsey’s own 

definition of ethical neutrality presupposes the philosophically suspect theory of logical 

atomism. On other common ways of defining the notion, it’s frequently noted that we 

lack good reasons for supposing that ethically neutral propositions exist, and in some 

cases we find that there are very good reasons for supposing that they cannot exist. Any 

system which relies on the existence of such propositions ought to be rejected.  

In this chapter, I will first outline Ramsey’s proposal in some detail (§7.1). This will 

help us to see why Ramsey thought he needed to introduce the notion of ethical neutrality, 

and why any theorem which appeals to ethically neutral propositions should be consid-

ered highly problematic (§7.2). In particular, I will argue that—whatever else may be the 

case—any system which requires ethically neutral propositions fails to satisfy desidera-

tum (1). 

7.1 Ramsey’s proposal 

One of Ramsey’s main goals in ‘Truth and Probability’ was to argue that the laws of 

probability supply for us the “logic of partial belief’” (1931, 166). His argument proceeds 

by first attempting to say what credences are, and on the basis of that understanding, 

showing that credences are probabilistically coherent. 

Regarding the first step, of defining credences, Ramsey clearly had operationalist sym-

pathies, asserting that the notion “has no precise meaning unless we specify more exactly 
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how it is to be measured” (1931, 167). To be measured as having probabilistically coher-

ent credences is (more or less), on this picture, to have probabilistically coherent cre-

dences, and anyone who can be measured through Ramsey’s procedure at all will have 

credences conforming to the laws of probability. Note that the procedure was intended to 

be applicable to ordinary agents—Ramsey was not trying to define credences for some 

ideally rational being, but for the everyday person on the street (albeit not without some 

unavoidable idealisation). 

Setting operationalism aside, it’s easy to see in ‘Truth and Probability’ an early state-

ment of something like preference functionalism: credences are to be understood through 

their role with respect to preferences when considered in conjunction with a total utility 

state. Ramsey writes that “the degree of a belief is a causal property of it, which we can 

express vaguely as the extent to which we are prepared to act on it” (1931, 169). Ramsey 

argues against characterising credences in terms of some introspectively accessible feel-

ing had by a subject upon considering the relevant proposition. These arguments go well 

beyond operationalism, though I will not recapitulate them here. He concludes that “in-

tensities of belief-feelings … are no doubt interesting, but … their practical interest is 

entirely due to their position as the hypothetical causes of beliefs qua bases of action” 

(1931, 172). On this more charitable interpretation, Ramsey advocates an early version 

of characterisational representationism, and his representation theorem can be seen as 

spelling out precisely the relevant functional roles associated with credence states. 

In any case, Ramsey proposes to take as the theoretical basis of his measurement sys-

tem a particular theory of decision making—that is, the theory that “we act in the way 

that we think most likely to realize the objects of our desires, so that a person’s actions 

are completely determined by his desires and opinions” (1931, 173). As noted in §3.1, his 

idea was to assume the basic truth of something like classical expected utility theory, and 

on that assumption, use empirical information about an agent’s preferences to work out 

what her credences and utilities must be. Ramsey was entirely aware of the empirical 

difficulties facing that theory, writing that: 

 

[it] is now universally discarded, but nevertheless comes, I think, fairly close to the truth in 

the sort of cases with which we are most concerned … This theory cannot be made adequate 

to all the facts, but it seems to me a useful approximation to the truth particularly in the 

case of our self-conscious or professional life, and it is presupposed in a great deal of our 

thought. (1931, 173) 

 

We will return shortly to what Ramsey meant by “the sort of cases with which we are 

most concerned”, and exactly what he needed to assume to get his measurement process 

off the ground. 

We can summarise Ramsey’s measurement procedure as follows: 
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(1) Determine S’s preferences over worlds and gambles 

(2) Define a relation of equal difference in utilities 

(3) Locate ethically neutral propositions of credence ½  

(4) Construct an interval scale representation 𝒟es of S’s preferences 

(5) Use 𝒟es to define a probability function ℬel 

 

I will discuss each step in turn. For the sake of simplicity, I have neglected to discuss one 

important aspect of Ramsey’s procedure: the use of preferences over complex gambles to 

define conditional probabilities, which are used to show that the measured credences con-

stitute a probability function.85 

7.1.1 Determining a preference ordering 

The first stage of Ramsey’s procedure is to determine the agent’s preferences over differ-

ent ways the world might be. This is, according to Ramsey, relatively straightforward: 

 

If … we had the power of the Almighty, and could persuade our subject of our power, we 

could, by offering him options, discover how he placed in order of merit all possible courses 

of the world. In this way all possible worlds would be put in an order of value … (1931, 

176) 

 

Ramsey writes that he intends the relevant objects of preference to be “different possible 

totalities of events … the ultimate organic unities” (1931, 177-8)—that is, possible 

worlds. I will use 𝒪 = {o1, o2, …} to designate the set of these “possible totalities of 

events”, which I’ll refer to as outcomes. Importantly, however, within only a few para-

graphs, Ramsey goes on to note that with respect to at least one proposition P, and some 

o1, o2, ‘[o1] and [o2] must be supposed so far undefined as to be compatible with both P 

and ¬P’ (1931, 178). The most natural interpretation of this seems to be that in some 

select few circumstances o1 and o2 ought to be considered not quite as worlds, but rather 

as propositions maximally specific with respect to everything except P.  

I suspect that Ramsey would have been happy with letting 𝒪 be a set of consistent 

propositions which are only maximally specific with respect to what the agent cares 

about, and making this exegetical move resolves certain difficulties which appear else-

where in his theory (see §7.2.1). However, in what follows we will simply treat 𝒪 as a set 

of very highly specific consistent propositions, some of which—but not all—may perhaps 

be maximally specific. 

Given a preference ordering over 𝒪, we are required then to empirically determine how 

the agent ranks gambles. Once again, Ramsey asks us to imagine that we have “persuaded 

 
85 This part of Ramsey’s procedure is outlined in (Bradley 2001). 
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our subject of our power”, but this time we make offers of the following kind: “Would 

you rather have world [o3] in any event, or world [o1] if P is true, and world [o2] if P is 

false?” (1931, 177). Let us represent the latter option, the gamble o1 if P is true, o2 other-

wise, as simply (o1, P; o2). Ramsey then notes that: 

 

If … [the agent] were certain that P was true, he would simply compare [o1] and [o3] and 

choose between them as if no conditions were attached; but if he were doubtful his choice 

would not be decided so simply. (1931, 177) 

 

Here, Ramsey looks to compare an outcome with a gamble, so we are to assume that 

gambles and outcomes are comparable. It is also evident from the conditions he later 

provides that we need to consider agents’ preferences between gambles. In sum, if 𝒢 is 

the set of all gambles of the form (o1, P; o2), then Ramsey requires us to empirically 

determine a preference ordering on 𝒪 ∪ 𝒢.  

There are a number of interpretive difficulties with Ramsey’s proposal that might be 

raised at this point. Contrary to what is frequently claimed, Ramsey nowhere mentions 

preferences over acts—and indeed, his simple two-outcome gambles lack sufficient struc-

ture to plausibly represent any act (whether objectively or as the agent in question con-

ceives of them). It is unclear, however, how Ramsey intended for us to understand his 

gambles. For reasons outlined by Joyce (1999, 62-3), “o1 if P is true, and o2 if P is false” 

should not be understood using material conditionals. Sobel (1998, 239) suggests that (o1, 

P; o2) is just a conjunction of subjunctives,  

 

(P □⟶ o1) & (¬P □⟶ o2) 

 

On the other hand, Bradley (1998, 193-4) treats his Ramsey-style gambles as a conjunc-

tion of indicative conditionals. Because he also wants to accept Adams’ Thesis (see 

Adams 1975), he foregoes any propositional interpretation of his theory’s (o1, P; o2), and 

instead treats his analogue of 𝒢 as a set of sentences in a formal language. I will not 

attempt to adjudicate whether it’s better to use subjunctive or indicative conditionals 

here—the issues that I will discuss are independent of any concerns that one might have 

here. 

It would be a mistake—though one which is unfortunately common—to equate a dis-

position to choose one gamble over another with a preference for the truth of one con-

junction of (indicative or subjunctive) conditionals over another. Dispositions to choose 

between gambles will depend on how the agent in question conceives of the options avail-

able, and there is no guarantee that by offering S a gamble Γ that returns o1 if P is true, o2 

otherwise, S will thereby represent Γ as such—S may have misheard, or may not trust the 
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offer.86 A rather more plausible claim, then, would be to say that a disposition to choose 

one gamble over another goes hand in hand with a preference for the truth of one pair of 

conditionals over another—viz., that pair of conditionals which the agent believes would 

most likely be made true by her choice. 

It is also unclear how propositions as highly specific as Ramsey suggests can be of-

fered to any ordinary human subject; the power to conceptualise even one possible world 

in all its detail seems beyond the average person. Even more worrying is that convincing 

a subject that “we had the power of the Almighty” would surely drastically alter her dox-

astic state prior to measuring it, as Jeffrey (1983, 158-60) has noted. Likewise, when a 

subject is offered the choice of either o3 or (o1, P; o2), we must not suppose that her cre-

dence in P is in any way changed by the offer, or this would ruin the measurement. 

Interestingly, Ramsey himself objects to the betting interpretation of credences on the 

grounds that “the proposal of the bet may inevitably alter [the subject’s] state of opinion” 

(1931, 172). Either Ramsey did not recognise that the same objection applies with greater 

force to his own account, or he believed that the worry could be addressed. Bradley (2001, 

285-8) suggests one way in which it might be addressed: rather than making the subject 

believe in our godlike powers, we simply ask her to judge her preferences amongst op-

tions as if they were genuinely available to her. To the extent that such a request can be 

satisfied, this re-construal of Ramsey’s methodology may help to minimise any changes 

to subjects’ credences prior to measurement. 

In any case, we can now say precisely what Ramsey meant when he referred to the 

accuracy of expected utility theory in “the sort of cases with which we are most con-

cerned”. We are to limit our attention to conscious, deliberate and presumably reflective 

judgements of preference between outcomes and outcomes, gambles and gambles, and 

outcome and gambles. Plausibly, Ramsey would have also held that we are not to consider 

cases where the subject is intoxicated, or under any kind of substantial physical or emo-

tional duress. Ramsey does not need to assume anything as strong as the truth of classical 

expected utility theory tout court, nor even its approximate truth across a wide range of 

cases—he only needs that it is accurate in this particular kind of case.  

Although his own use of ≽ is generally put in behavioural terms, I do not think that it 

would be very harmful to the essence of Ramsey’s account to interpret his ≽ as a kind of 

considered mentalistic preference relation; roughly: 

 

x ≽ y relative to an agent S iff S judges x to be at least as good as y after consciously 

deliberating on the matter, while neither under physical or emotional distress, nor under the 

influence of any intoxicating substances, and so on 

 

 
86 The point here is similar, of course, to the one raised in §5.4 regarding the interpretation of Savage’s 

act-functions. See Chapter 9 for further discussion. 
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On this interpretation, Ramsey’s assertion that expected utility theory is broadly accurate 

in “the sort of cases with which we are most concerned” is essentially the claim that an 

ordinary agent’s reflective preferences are what we would expect of an expected utility 

maximiser. 

7.1.2 Defining an equal difference relation 

Ramsey’s first step has us empirically determine how the agent ranks outcomes and gam-

bles. However, a simple preference ordering on outcomes and gambles only suffices for 

an ordinal scale representation of an agent’s utilities for those outcomes and gambles. For 

Ramsey, this is unsatisfactory: “There would be no meaning in the assertion that the dif-

ference in value between [o1] and [o2] was equal to that between [o3] and [o4]” (1931, 

176). Thus Ramsey sets himself the task of characterizing an equal difference (in utilities) 

relation between pairs of outcomes wholly in terms of preferences over gambles. If he 

can do this, then on the basis of well-known results from the mathematical theory of 

measurement, he can construct a richer representation of our utilities. 

Let us say that (o1, o2) =
d (o3, o4) holds iff the difference in value for the agent between 

o1 and o2 is equal to the difference in value between o3 and o4. Ramsey’s goal of defining 

=d in terms of preferences over gambles then sets up a certain difficulty to be overcome. 

According to the background assumption of CEU, an agent’s preferences over gambles 

are determined by two factors: their utilities and their credences. Whether an agent prefers 

(o1, P; o2) to (o3, Q; o4), for example, depends partly on the utilities that she attaches to 

o1, o2, o3, o4, and partly on the credences regarding P and Q. However, whether (o1, o2) 

=d (o3, o4) holds for that agent should depend solely on the utilities she attaches to o1, o2, 

o3, o4. In order to define =d in terms of preferences over gambles, then, Ramsey needs 

some way of factoring out any confounding influences, so that whether the agent prefers 

one of the relevant gambles to another depends only on the utilities attached to the out-

comes involved. 

Ramsey’s central innovation here is to define, in terms of preference, what it is for an 

agent to have credence ½ in a proposition, and then to use this to define =d. Let us suppose 

for now that whether an agent prefers (o1, P; o2) to (o3, Q; o4) depends only on the utilities 

the agent has for o1, o2, o3, o4, and the credences she has for P and Q. More specifically, 

assume Naïve Expected Utility Theory: 

 

Naïve Expected Utility Theory 

If 𝒟es is a real-valued function that models the agent’s utilities, and ℬel is a credence func-

tion that models the agent’s credences, then (o1, P; o2) ≽ (o3, Q; o4) iff 𝒟es(o1).ℬel(P) + 

𝒟es(o2).(1 – ℬel(P)) ≥ 𝒟es(o3).ℬel(Q) + 𝒟es(o4).(1 – ℬel(Q)) 
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We will note shortly that Ramsey did not assume Naïve Expected Utility Theory; but for 

now it suffices to explain the reasoning behind his definitions. It is worth noting that while 

ℬel is only required to be a credence function (rather than a probability function specifi-

cally), Naïve Expected Utility Theory does carry the implicit assumption that ℬel(¬P) = 

1 – ℬel(P). Were this not the case, we would expect the contribution of o2 to the desira-

bility of (o1, P; o2) to be determined by 𝒟es(o2).(1 – ℬel(P)) rather than 𝒟es(o2).ℬel(¬P) 

directly. 

Suppose that the agent is indifferent between (o1, P; o2) and (o2, P; o1). According to 

Naïve Expected Utility Theory, there are only two (not mutually exclusive) ways in which 

this might come about: either both o1 and o2 have exactly the same utility for the agent, 

or the agent’s credence in P is exactly ½. To rule out the former possibility, we consider 

a pair of gambles (o3, P; o4) and (o4, P; o3), where we know that the agent is not indifferent 

between o3 and o4. If we find that the agent is indifferent between (o3, P; o4) and (o4, P; 

o3), we will have established that ℬel(P) = ½. If her credence in P were any other way, 

then the agent would have not been indifferent between (o3, P; o4) and (o4, P; o3). 

With this in place, we are then able to say that (o1, o2) =
d (o3, o4) holds iff (o1, P; o4) ∼ 

(o2, P; o3), where P is such that the agent believes it to degree ½. The reasoning behind 

this is not immediately obvious. From the assumption of Naïve Expected Utility Theory, 

we have that (o1, P; o4) ∼ (o2, P; o3) holds just in case: 

 

𝒟es(o1).ℬel(P) + 𝒟es(o4).(1 – ℬel(P)) = 𝒟es(o2).ℬel(P) + 𝒟es(o3).(1 – ℬel(P)) 

 

We have also already established that ℬel(P) = ½ = 1 – ℬel(P), so we can drop the con-

stant factor leaving us with: 

 

𝒟es(o1) + 𝒟es(o4) = 𝒟es(o2) + 𝒟es(o3) 

 

Which holds just in case: 

 

𝒟es(o1) – 𝒟es(o2) = 𝒟es(o3) – 𝒟es(o4) 

 

This just states that the difference between o1 and o2 is equal to the difference between o3 

and o4; so if ℬel(P) = ½, (o1, P; o4) ∼ (o2, P; o3) iff (o1, o2) =
d (o3, o4). 

7.1.3 Locating ethically neutral propositions 

Before moving on to measuring utilities, however, Ramsey makes the following note: 
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There is first a difficulty which must be dealt with; the propositions like P … which are 

used as conditions in the [gambles] offered may be such that their truth or falsity is an 

object of desire to the subject. This will be found to complicate the problem, and we have 

to assume that there are propositions for which this is not the case, which we shall call 

ethically neutral. (1931, 177) 

 

This is the entirety of what Ramsey writes regarding his motivation for introducing ethi-

cally neutral propositions. 

The idea is clear enough: Naïve Expected Utility Theory is mistaken, as it fails to take 

into account the utility that may attach to the gamble’s condition and how the condition 

might influence the agent’s valuation of the elements of 𝒪. Assuming that o1 is consistent 

with both P and ¬P, it’s possible that an agent might attach a different value to (o1 & P) 

than to (o1 & ¬P). These are potentially quite different states of affairs with potentially 

different utilities, and the truth or falsity of P might make a great deal of difference to 

how the outcome o1 is valued. For instance, suppose that in o1 the agent has a puppy as a 

pet, while in o2 she instead keeps a kitten, and let P be puppies spread disease but kittens 

don’t; plausibly, (o1 & P) will be valued quite differently than (o1 & ¬P), and likewise 

for (o2 & P) and (o2 & ¬P). 

Instead of Naïve Expected Utility Theory, and supposing o1, o2, o3, and o4 are each 

compatible with the relevant propositions, we should really have that: 

 

 (o1, P; o2) ≽ (o3, Q; o4) 

 

Just in case: 

 

𝒟es(o1 & P).ℬel(P) + 𝒟es(o2 & ¬P).(1 – ℬel(P)) ≥ 𝒟es(o3 & Q).ℬel(P) + 𝒟es(o4 & ¬Q).(1 

– ℬel(Q)) 

 

It is easy to see that this fact invalidates the reasoning behind both the definition of what 

it is for an agent to have a credence ½ in a proposition, and the definition of =d, for now 

we can no longer say that the agent’s preferences between (o1, P; o2) and (o3, Q; o4) 

depend on their credences in P and Q and the utilities the agent has for o1, o2, o3, o4. 

Rather, they actually depend on the agent’s credences in P and Q and utilities for (o1 & 

P), (o2 & ¬P), (o3 & Q), and (o4 & ¬Q). 

Ramsey’s solution to this difficulty is the ethically neutral proposition—a kind of prop-

osition the truth or falsity of which is of absolutely no concern to the agent. Ramsey pro-

vides us with a problematic definition of the notion, which I will discuss further in §7.2.2. 

The apparent purpose of its introduction, however, is that if P is ethically neutral, then 
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the conjunction of P with o has the same utility as o itself, and similarly for the conjunc-

tion of ¬P and o. Setting aside Ramsey’s own definition, we can say that P is ethically 

neutral whenever o ∼ (o & P) ∼ (o & ¬P), for any o ∈ 𝒪 that is compatible with both P 

and ¬P.  

So long as we are considering gambles conditional on ethically neutral propositions, 

we can without risk of error apply Naïve Expected Utility Theory. Thus Ramsey happens 

upon the following two definitions: 

 

Definition 7.1: Ethically neutral proposition of credence ½  

P is an ethically neutral proposition of credence ½ iff P is ethically neutral, and for some 

o, o2 ∈ 𝒪, ¬(o1 ∼ o2), and (o1, P; o2) ∼ (o2, P; o1) 

 

And: 

 

Definition 7.2: Equal difference relation 

(o1, o2) =d (o3, o4) iff (o1, P; o4) ∼ (o2, P; o3), where P is an ethically neutral proposition of 

credence ½ 

7.1.4 Measuring utilities 

At this point, Ramsey lists eight preference conditions, and states (but does not prove) 

that their satisfaction enables an appropriately rich representation of the agent’s prefer-

ences. Let 𝒫 be a set of propositions, 𝒪 the set of outcomes, and 𝒢 the set of gambles; ≽ 

is defined on 𝒪 ∪ 𝒢. Ramsey’s Representation Conjecture can then be stated thus: 

 

Ramsey’s Representation Conjecture 

If RAM1–8 hold of <𝒫, 𝒪, 𝒢, ≽>, then there exists a real-valued function 𝒟es on 𝒪 such 

that for all o1, o2, o3, o4 ∈ 𝒪,  

(i) 𝒟es(o1) – 𝒟es(o2) = 𝒟es(o3) – 𝒟es(o4) iff (o1, o2) =d (o3, o4) 

Furthermore, 𝒟es is unique up to positive linear transformation 

 

We will not consider whether Ramsey’s preference conditions successfully ensure the 

desired representation result, or how they might be fleshed out to do so if not—though 

see (Bradley 2001) for relevant work in this regard. It is clear that something in the vicin-

ity of Ramsey’s conditions should suffice, though I will not take a stand on the precise 

formulation needed. 

The very first preference condition is the most distinctive aspect of Ramsey’s theorem: 

 

RAM1  There is at least one ethically neutral proposition of credence ½ 
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The importance of RAM1 for the rest of Ramsey’s formal system should not be under-

stated. Most of the preference conditions to follow are stated in terms of =d, which is 

defined in terms of ethically neutral propositions. If RAM1 is false, those conditions will 

be in some cases false, in others trivial; in either case, the system as a whole collapses 

without this foundational assumption. 

The next three preference conditions are each obviously necessary for Ramsey’s de-

sired representation result. For all P, Q ∈ 𝒫, o1, o2, o3, o4, o5, o6 ∈ 𝒪, (o1, P; o2), (o3, P; 

o4) ∈ 𝒢, and x, y, z ∈ 𝒪 ∪ 𝒢, 

 

RAM2 (i) If P, Q, are both ethically neutral propositions of credence ½, and (o1, P; o2) 

∼ (o3, P; o4), then (o1, Q; o2) ∼ (o3, Q; o4), and (ii) if (o1, o2) =d (o3, o4), then o1 ≻ 

o2 iff o3 ≻ o4, and o1 ∼ o2 iff o3 ∼ o4 

RAM3  ∼ is transitive 

RAM4  =d is transitive 

 

The role of RAM2 is ensure that the definition of =d is coherent. Together, RAM2–

RAM4 help to ensure that =d, which holds between pairs of outcomes, mirrors the behav-

iour of the equals relation between the differences of pairs of real numbers. 

The following two existential conditions are stated in terms of what Ramsey calls val-

ues. Formally,  

 

Definition 7.3: The value of o 

For every o ∈ 𝒪, let o = {o′ ∈ 𝒪: o′ ∼ o} 

 

The value of an outcome o, denoted o, is the set of all outcomes in 𝒪 with the same 

desirability as o. Ramsey’s next two conditions are then: 

 

RAM5  For all o1, o2, o3, there is exactly one o4 such that (o1, o4) =d (o2, o3) 

RAM6 For all o1, o2, there is exactly one o3 such that (o1, o3) =d (o3, o2) 

 

RAM5 implies that there is always at least one outcome o4 such that the difference be-

tween o1 and o4 is equal to the difference between o2 and o3, for any choice of outcomes 

o1, o2 and o3. In a manner of speaking, RAM6 says that for any pair of outcomes o1 and 

o2, there is at least one outcome o3 with a utility exactly half-way between that of o1 and 

o2. Given RAM1 (which implies the non-triviality of ≻ on 𝒪), this entails a denseness to 

the agent’s preference structure—and correspondingly, that 𝒪 is infinite. 

Finally, Ramsey lists two other conditions, which are not spelled out in any detail: 
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RAM7  “Axiom of continuity:—Any progression has a limit (ordinal)” (Ramsey 1931, 

179) 

RAM8  Archimedean condition 

 

What Ramsey intended for RAM7 is something of a mystery. One guess (cf. Sobel 1998, 

Bradley 2001) would be that for every gamble (o1, P; o2), there is an outcome o3 such that 

o3 ∼ (o1, P; o2). A condition to this effect seems to be required to ensure that every real 

number can be mapped to at least one outcome’s value. 

Ramsey does not specify the character of RAM8, however it’s easy to guess its role—

like other so-called Archimedean conditions in various representation theorems, it is sup-

posed to rule out any one outcome or gamble being incomparably better or worse than 

another. More specifically, RAM8 ensures that the numerical representation satisfies the 

Archimedean property of real numbers: for any positive number x, and any number y, 

there is an integer n such that n + x ≥ y.87 

7.1.5 Measuring credences 

Suppose that we have our function 𝒟es. Ramsey then argues that: 

 

Having thus defined a way of measuring value we can now derive a way of measuring 

belief in general. If the option of [o2] for certain is indifferent with that of [(o1, P; o3)], we 

can define the subject’s degree of belief in P as the ratio of the difference between [o2] and 

[o3] to that between [o1] and [o3] … This amounts roughly to defining the degree of belief 

in P by the odds at which the subject would bet on P, the bet being conducted in terms of 

differences of value as defined. (1931, 179-80) 

 

In a footnote, Ramsey adds that ‘[o1] must include the truth of P, [o3] its falsity; P need 

no longer be ethically neutral’ (1931, 179). We are led to the following definition:  

 

Definition 7.4: Ramsey’s ℬel 

For all contingent propositions P and outcomes o1, o2, o3 such that o1 implies P, o3 implies 

¬P, ¬(o ∼ o3), and o2 ∼ (o1, P; o3), ℬel(P) = (𝒟es(o2) – 𝒟es(o3))/(𝒟es(o1) – 𝒟es(o3)) 

 

Ramsey mistakenly states that Definition 7.4 “only applies to partial belief and does not 

include certain beliefs” (1931, 180), though perhaps he meant that the definition does not 

 
87 Were one to spell out RAM8, it is likely that it would need to look much like ADS5 of Definition 8.6 

below. 
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apply if P is non-contingent. In this case, we simply stipulate that ℬel(P) = 1 if P is nec-

essary, 0 if P is impossible. Note that, because ratios of differences are preserved across 

positive linear transformations of 𝒟es, ℬel(P) so-defined is unique. 

The reasoning behind this final step is again left up to the reader, though also it follows 

from his background assumption of the descriptive adequacy of classical expected utility 

theory. Note first of all that if o1 entails P, then the conjunction of P and o1 is equivalent 

to o1, so (Ramsey implicitly assumes) 𝒟es(o1) = 𝒟es(o1 & P). Thus, if (o1, P; o2) ∼ o3, 

where o1 entails P and o2 entails ¬P, then: 

 

𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)) = 𝒟es(o3) 

 

This is then rearranged to give us the definition of ℬel(P) as above. 

For future discussion, it is worth making Ramsey’s implicit assumption explicit: 

 

Indifference to Equivalent Conjunctions 

For all P, Q, if P ⊢ Q, then P ∼ (P & Q) 

 

Ramsey does note two more assumptions needed to ensure the coherence of his definition. 

The first of these is that the value of ℬel(P) does not depend on the choice of outcomes 

and gambles satisfying the stated conditions. In effect, this is to place restrictions directly 

upon ℬel after it has been defined in terms of preferences. The second assumption is that 

for any gamble (o1, P; o2) we will always be able to find some outcome o3 such that o3 ∼ 

(o1, P; o2). 

Ramsey (1931, 180ff) goes on to define conditional probabilities using preferences 

over more complicated gambles, and he argues that ℬel satisfies the laws of probability, 

though I will not recapitulate that argument here: it is enough that Ramsey provides a 

credence function, ℬel: 𝒫 ↦ [0, 1], that supposedly represents the agent’s credences—

after all, it combines with the agent’s utilities for outcomes to determine their preference 

ordering for two-outcome gambles in more or less the manner we pre-theoretically expect 

credence to do so. For our present purposes, it is incidental whether ℬel satisfies the con-

ditions of the probability calculus. 

7.2 The problem of ethical neutrality 

Despite its very early inception, there are several features that make Ramsey’s system 

attractive, especially in comparison to later works. The theorems developed by von Neu-

mann and Morgenstern (1944) and Anscombe and Aumann (1963) were in some respects 

a rediscovery of ideas already present in ‘Truth and Probability’, but their appeal to ex-

trinsically given probabilities limits their applicability, whereas Ramsey’s system makes 
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no such appeal. Savage’s theorem was also founded on Ramseyan ideas, but Savage’s 

system suffers from a number of defects not present in Ramsey’s system. For instance, 

given the plausible assumption that Ramsey wanted to avoid impossible gambles (§7.2.1), 

the outcomes of a gamble are always consistent with the gamble’s condition. Conse-

quently, Ramsey’s system seems to avoid anything like the constant acts problem that 

plagues Savage’s system. Furthermore, the domain of Ramsey’s ℬel is not limited to dis-

junctions of states. Another attractive feature of Ramsey’s proposal is that it provides us 

with the Standard Uniqueness Condition. We might contrast this with the monoset theo-

rem of §6.2, where the <ℬel, 𝒟es> pair is only unique up to a fractional linear transfor-

mation. 

All of this is achieved, however, on the basis of a highly problematic assumption about 

ethically neutral propositions, which I will now argue makes Ramsey’s system untenable. 

My critical discussion of Ramsey’s ideas focuses on this assumption as it raises unique 

problems not faced by the theorems I have considered in earlier chapters. 

7.2.1 Why Ramsey needed ethical neutrality 

Ramsey was right to reject Naïve Expected Utility Theory. If o is compatible with both P 

and ¬P, then it’s entirely possible that the agent values (o & P) more (or less) than (o & 

¬P). Any rational agent ought to take this into account when deliberating between gam-

bles conditional on P with o as an outcome. For example, contrary to Naïve Expected 

Utility Theory, it’s possible that the agent could be indifferent between o1 ∼ o2 without 

thereby being indifferent between (o1, P; o2) and (o2, P; o1), if the truth or falsity of P 

makes a difference to how the agent values o1 or o2. 

However, this point is conditional on o1 and o2 being each compatible with both P and 

¬P. If instead we suppose that o1 implies P, then (o1 & P) is logically equivalent to o1—

and for Ramsey, if o1 implies P, then the desirability of o1 is just the desirability of (o1 & 

P). Ramsey’s characterisation of the ℬel function relies on this assumption. So, inasmuch 

as o1 implies P and o2 implies ¬P, 

 

𝒟es((o1, P; o2))  = 𝒟es(o1 & P).ℬel(P) + 𝒟es(o2 & ¬P).(1 – ℬel(P))  

 = 𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)) 

 

Note that this holds regardless of whether P is ethically neutral or not. In other words, if 

o1 implies P and o2 implies ¬P, and given Indifference to Equivalent Conjunctions, we 

can apply Naïve Expected Utility Theory to the gamble (o1, P; o2). 

Interestingly, Ramsey originally describes his outcome set 𝒪 as a set of possible 

worlds, and it is part of Ramsey’s background theory that every world individually deter-

mines the truth or falsity of any proposition. In particular, Ramsey assumed a broadly 
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Wittgensteinian logical atomism—though he believed it possible to reformulate his the-

orem without these commitments (see his 1931, 177). We are to suppose that there exists 

a class of atomic propositions such that no two worlds are exactly identical with respect 

to the truth of these propositions, every atomic proposition can be true or false entirely 

independently of any others, and for every world w and atomic proposition P, there is 

another world w* that differs only with respect to the truth of P. Every possible world on 

this picture is determined by the set of atomic propositions true at that world. Even setting 

aside the assumption of logical atomism, on an orthodox conception of propositions as 

sets of worlds, then for any given (determinate) proposition, a given world either is or is 

not a member of that proposition. Every world therefore determines either the truth or 

falsity of any proposition. 

This leaves us with something of a puzzle: why did Ramsey alter his characterisation 

of the outcome set (as noted in §7.1.1)? It seems that if he limited his attention to gambles 

like (o1, P; o2), where o1 implies P and o2 implies ¬P, then he could have used preferences 

over these to define =d without needing to introduce the notion of ethical neutrality. The 

following piece of terminology will be helpful: 

 

Definition 7.5: Impossible gambles 

A gamble (o1, P; o2) is impossible iff P and ¬P are consistent and either (o1 & P) or (o2 & 

¬P) are inconsistent; (o1, P; o2) is possible otherwise 

 

Where outcomes are possible worlds, every possible gamble (o1, P; o2) conditional on a 

contingent proposition P must be such that o1 implies P and o2 implies ¬P. Where one of 

either P or ¬P is impossible—say, ¬P—then the other must be necessary; in which case 

ℬel(¬P) = 0, ℬel(P) = 1, and every o implies P, so 𝒟es(o) = 𝒟es(o & P). We can therefore 

always apply Naïve Expected Utility Theory to possible gambles, if the outcomes in 𝒪 

are worlds. So why did Ramsey not stick to his original characterisation of outcomes as 

worlds, and simply use preferences over possible gambles to define =d? 

The answer to this question can be discovered by considering again how Ramsey de-

fines what it is for an agent to have a credence of ½ in a proposition. In particular, to 

determine whether P is of credence ½, we need to consider preferences over two gambles 

of the form (o1, P; o2) and (o2, P; o1). The definition Ramsey gives us only makes sense 

if the outcomes o1 and o2 are not possible worlds. If o1 and o2 are possible worlds, then at 

least one of the two gambles is impossible, and if either gamble is impossible, then the 

reasoning behind the assignment of a credence value of ½ to the contingent proposition 

P is no longer valid.  

Indeed, Ramsey recognised the difficulty here, and for this reason wrote that, at least 

for some outcomes o1 and o2 required for his definition, o1 and o2 “must be supposed so 

far undefined as to be compatible with both P and ¬P”. Supposing for simplicity that P 

is atomic, we are presumably to take the outcomes o1 and o2 as near-worlds, which we 
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can understand as propositions that are just shy of being maximally specific. Given his 

logical atomism, for every world w and every atomic proposition P, there is a proposition 

that nearly uniquely identifies w except for specifying whether P is true or not. In Ram-

sey’s framework, a near-world with respect to an atomic proposition P is a disjunction of 

two worlds wP and w¬P that are identical with respect to all of their atomic propositions 

except for P. 

The answer to our puzzle, then, is that Ramsey’s set of outcomes cannot quite be the 

set of possible worlds given his strategy for defining =d. For the pair of possible gambles 

(o1, P; o2) and (o2, P; o1) referred to in Definition 7.1, neither o1 nor o2 can imply either 

P or ¬P. It follows for the reasons given, then, that we cannot in general apply Naïve 

Expected Utility Theory to such gambles without appeal to ethically neutral propositions. 

Before I move on to the issues surrounding ethically neutral propositions, it is worth 

noting that Ramsey’s RAM1 seems to understate what he actually required. This is be-

cause, given how he proposed to define =d, without changes elsewhere in his system Ram-

sey also required either that we have preferences over impossible gambles, or that every 

outcome in 𝒪 was compatible with both the truth and falsity of some ethically neutral 

proposition. Suppose that o1 ∼ o′1, so 𝒟es(o1) – 𝒟es(o′1) = 𝒟es(o′1) – 𝒟es(o1). From Def-

inition 7.2, we know that (o1, o′1) =
d (o′1, o1) is only defined if the agent has preferences 

over some pair of gambles of the form (o1, P; o1) and (o′1, P; o′1), where P is a contingent 

proposition. It follows that either o1 is compatible with P and ¬P, and similarly for o′1, or 

at least one of these two gambles is impossible. 

One might suppose that Ramsey was happy to deal with preferences over impossible 

gambles. This would have forced him to assume that there is an interesting difference 

between two impossible propositions (o1 & P) and (o2 & P), where both o1 and o2 entail 

¬P but ¬(o1 ∼ o2). For suppose that Ramsey had only one impossible proposition, ⊥. Then 

𝒟es(o1 & P) = 𝒟es(o2 & P) = 𝒟es(⊥), but 𝒟es(o1) ≠ 𝒟es(o2). For whatever value we take 

𝒟es(⊥) to have, it is clear that this will lead to problems. Suppose that 𝒟es(⊥) ≠ 𝒟es(o1); 

o1 and o2 each imply P; o3 implies ¬P; and 𝒟es(o1) = x, 𝒟es(o2) = 𝒟es(o3) = y. We require 

that (o1, o2) =
d (o1, o3), for obviously x – y = x – y. However, the justification for Definition 

7.2 fails under these conditions: 

 

 (o1, o2) =d (o1, o3) iff (o1, P; o3) ∼ (o2, P; o1) 

 

This holds just in case: 

 

𝒟es(o1 & P).ℬel(P) + 𝒟es(o3 & ¬P).(1 – ℬel(P)) = 𝒟es(o2 & P).ℬel(P) + 𝒟es(o1 & ¬P).(1 

– ℬel(P)) 

 

Supposing ℬel(P) = ½, this reduces to 
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½x + ½y = ½y + ½𝒟es(⊥) 

 

It follows that 𝒟es(⊥) = x = 𝒟es(o1), which contradicts our initial assumption. 

The only consistent way that Ramsey could have included impossible gambles in his 

system would have been to treat different impossible propositions as different objects of 

desire. However, the move from worlds to near-worlds in his characterisation of the out-

come set 𝒪 strongly suggests that he desired to avoid impossible gambles. And rightly so: 

restricting our attention to possible gambles seems the most plausible option. It is not 

obvious how we ought to treat preferences with respect to impossible gambles. For in-

stance, it’s implicit in Ramsey’s system that if o1 ≽ o2, then o1 ≽ (o1, P; o2) ≽ o2. Without 

this assumption he is unable to show that ℬel is a credence function (see the proof of 

Theorem 8.3 in Appendix A). However, suppose that P is contingent, but we know that 

o1 implies ¬P and so (o1 & P) cannot possibly obtain. In this case, it seems at least as 

plausible that o2 ≻ (o1, P; o2) inasmuch as o2 constitutes a desirable outcome—after all, 

we know we are not going to receive o1 in the event that P and choosing (o1, P; o2) only 

has leaves one with a chance ℬel(¬P) of receiving o2, so it would seem preferable to have 

o2 for certain. 

Thus, it looks as though Ramsey was implicitly assuming something even stronger 

than RAM1: 

 

RAM1* For every o ∈ 𝒪, there is at least one ethically neutral proposition P of credence 

½ such that o is compatible P and ¬P 

 

As I will argue shortly, RAM1 is already too strong of an assumption for characterisa-

tional representationism to deal with. RAM1* is stronger still, and by a wide margin. 

Even where the former might be defended, the latter seems indefensible. 

7.2.2 Problems with ethical neutrality 

In looking at whether the notion of ethical neutrality is viable, we ought first to start with 

Ramsey’s own definition: 

 

Definition 7.6: Ethical neutrality (Ramsey’s original) 

P is ethically neutral iff (i) if P is atomic, then wP ∼ w¬P, for all pairs of worlds wP, w¬P 

identical with respect to all their atomic propositions except for P, (ii) if P is non-atomic, 

then all of Ps atomic truth arguments are ethically neutral 

 

So, an atomic proposition P is ethically neutral for an agent iff any two possible worlds 

differing in their atomic propositions only in the truth of P are always equally valued by 



 

171 

 

that agent, and ethical neutrality for non-atomic propositions is understood in terms of 

atomic propositions. Ramsey here demonstrates commitment to another aspect of Witt-

gensteinian atomism: every non-atomic proposition can be constructed from atomic prop-

ositions using truth-functional connectives. We are able to locate such a proposition, if it 

exists, by considering the agent’s preferences over worlds. As just noted, for some gam-

bles (o1, P; o2) and (o2, P; o1), Ramsey requires that o1 and o2 are compatible with both P 

and ¬P. If we suppose for simplicity that P is atomic, then o1 and o2 are near-worlds with 

respect to P. It follows from Ramsey’s definition then that (o1 & P) ∼ (o1 & ¬P) and (o2 

& P) ∼ (o2 & ¬P). It does not yet follow that (o1 & P) ∼ (o1) ∼ (o1 & ¬P), which Ramsey 

also required. However, we can take this as an unstated background assumption: if (o1 & 

P) ∼ (o1 & ¬P), then (o1 & P) ∼ (o1) ∼ (o1 & ¬P). 

Sobel (1998, 241) has argued that there are few or no ethically neutral propositions in 

this sense. Consider the proposition there are an even number of hairs on Dan Quayle’s 

head. Sobel argues that this can be ethically neutral for ‘almost no one’: 

 

Though it is true that I do not care about Quayle’s hair, there are worlds that differ regarding 

the truth of that proposition that, just because of that difference, differ in their values for 

me. I am thinking of worlds in which I have bet money on this proposition! The argument 

… can be readdressed to atomic propositions, if such there be, to the conclusion that no 

atomic proposition is Ramsey-ethically-neutral for any of us. (1998, 248) 

 

There seem to be two concerns here. The first appears to be something like the following: 

for any proposition whatsoever, we should be able to find a set of otherwise similar pos-

sible worlds where we have entered into a bet conditional on that proposition with desir-

able outcomes if things turn out one way, and undesirable outcomes if things turn out 

another way. Since we care about the outcomes of the bet, we will value the relevant 

worlds differently. However, this objection seems to have no hold given Ramsey’s view: 

the relevant worlds are supposed to differ at the atomic level only with respect to the 

proposition in question. In all other respects—including, importantly, the payouts for any 

bets we may enter into—the worlds are supposed to be identical. 

The second and more obvious worry is that Ramsey’s conception of ethical neutrality 

requires the assumption of logical atomism for its cogency. Ramsey built his theory upon 

the assumption of logical atomism so that he could make sense of the idea of two worlds 

differing only with respect to a particular proposition. The notion is of little use to con-

temporary philosophers who by and large reject that aspect of Wittgenstein’s view. If we 

are to give ≽ a plausible interpretation qua preference relation, we had better not build 

our account of that relation’s objects on a now-defunct account of propositions. 
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In his atomism-free reconstruction of Ramsey’s theorem, Bradley (2001) supplies the 

following definition, intended to achieve the same purpose:88 

 

Definition 7.7: Ethical neutrality (atom-free) 

P is ethically neutral iff for all propositions Q (that are compatible with both P and ¬P), (P 

& Q) ∼ Q ∼ (¬P & Q) 

 

Tautological and impossible propositions will be trivially ethically neutral according to 

this definition. Clearly, however, we are interested only in non-trivially ethically neutral 

propositions. A common suggestion is that propositions such as the tossed coin will land 

heads constitute ethically neutral propositions of credence ½. Part of the reason why we 

use coin tosses occasionally when making decisions is because we have no intrinsic in-

terest in whether the coin lands heads or tails. If Q is something like there are dogs, and 

P is the tossed coin will land heads, then it seems plausible that (P & Q) ∼ Q ∼ (¬P & 

Q). 

However, there are strong reasons to think that no contingent propositions will be eth-

ically neutral in the sense of Definition 7.7, for any minimally rational subject. Let P be 

the tossed coin will land heads, and take Q to be the proposition (the tossed coin will land 

heads & I receive $100000) or (the tossed coin will not land heads & I get kicked in the 

shins). Q is obviously compatible with both P and ¬P. However, (P & Q) is equivalent 

to the tossed coin will land heads & I receive $100000 while (¬P & Q) is equivalent to 

tossed coin will not land heads & I get kicked in the shins. But for some very strange 

preference orderings, it’s certainly not the case that (P & Q) ∼ Q ∼ (¬P & Q).  

The point here generalises easily; there are no non-trivially ethically neutral proposi-

tions in this sense. Note that the issue here is not that no contingent proposition satisfies 

the definition exactly, while there may nevertheless be some propositions which approx-

imate ethical neutrality. Rather, the upshot is that no proposition even comes close to 

satisfying the requirements of ethical neutrality. We will always be able to find countless 

many propositions Q that falsify the indifference requirements. 

A refinement of Definition 7.7 might be useful. Instead of requiring (P & Q) ∼ Q ∼ 

(¬P & Q) for all Q compatible with both P and ¬P, Ramsey only requires the following: 

 

 
88 Definition 7.7 is a slight improvement upon the definition that Bradley actually gives in his paper, 

which does not include the restriction to propositions compatible with both P and ¬P. Without this re-

striction, any ethically neutral proposition, if it exists, has the same value as every necessary and every 

impossible proposition, and furthermore, the same value as every proposition Q which entails either P or 

¬P. If we assume that the utility of a given proposition is determined by the (credence-weighted) utilities 

of its disjoint parts, then it will turn out on this definition that an ethically neutral proposition only exists if 

all propositions have precisely the same utility. 
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Definition 7.8: Ethical neutrality (atom-free, refined) 

P is ethically neutral iff o ∼ (o & P) ∼ (o & ¬P), for any outcome o ∈ 𝒪 that is compatible 

with both P and ¬P 

 

If there are no outcomes compatible with both P and ¬P, then P is trivially ethically neu-

tral by this definition. Again, we can set such propositions aside; we are interested in non-

trivially ethically neutral propositions. Definition 7.8 is weaker than Definition 7.7 be-

cause if Q is not in the outcome set 𝒪, then there are no relevant gambles with Q as an 

outcome and we do not need to concern ourselves over whether (P & Q) ∼ Q ∼ (¬P & 

Q). More generally, if we assume that there are far fewer propositions in 𝒪 than in 𝒫, then 

the foregoing objection to Definition 7.7 is blocked. This will certainly be true if the out-

comes in 𝒪 are highly specific, as is the case in Ramsey’s system. 

With that said, it’s still not obvious that any non-trivially ethically neutral propositions 

exist even in this weaker sense. Why should we suppose that there are any propositions 

P such that (non-trivially), o ∼ (o & P) ∼ (o & ¬P) for all o ∈ 𝒪 compatible with P and 

¬P? And moreover, if RAM1* is being assumed, why should we suppose that for every 

o ∈ 𝒪, we will find such propositions? Without knowing the exact nature of the outcome 

space 𝒪, we cannot even know whether there are any outcomes compatible with both P 

and ¬P, for an arbitrarily chosen proposition P. Ramsey explicitly stipulates that there 

must be at least one pair of outcomes compatible with some ethically neutral proposition 

of credence ½ and its negation—but this stipulation is meaningless inasmuch as we do 

not already know what proposition that may be. Unfortunately, Ramsey’s discussion 

leaves the nature of 𝒪 quite vague, making the matter impossible to judge. 

We can circumvent this concern by stipulating that 𝒪 contains, for each of a very wide 

range of propositions in 𝒫, outcomes that are undefined with respect to that proposition. 

But even then, Ramsey gives us little reason to suppose that ethically neutral propositions 

exist relative to a given agent’s preference ordering—still less that there are any such 

propositions that satisfy Definition 7.1. RAM1 clearly cannot be defended as a condition 

of rationality, and it does not follow from Ramsey’s background assumption of the de-

scriptive adequacy of CEU. Ramsey’s aim in the first instance was to develop a procedure 

for the measurement of credences, so unlike other intended uses for decision-theoretic 

representation theorems he did not require his conditions to be constraints of practical 

rationality; nevertheless, if his process is to be viable then it ought at least be applicable. 

It may not be impossible for a rational agent to satisfy the condition, but we still require 

good reasons to believe that most do—yet no reasons are forthcoming.  

A related issue regards Ramsey’s proto-functionalist attempt to define credences in 

terms of his measurement procedure: a definition of credences which relies centrally on 

a dubitable and unjustified existential assumption is of very limited interest for character-

isational representationism. Are we to suppose that agents who falsify RAM1 do not have 

credences? Ultimately, given his reliance upon ethically neutral propositions, Ramsey’s 
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system was not sufficient to establish the main upshot of ‘Truth and Probability’: that the 

laws of probability provide for us the logic of partial belief. Even if it is understood in 

terms of Definition 7.8, RAM1 is a very shaky foundation for a measurement procedure, 

and still worse for a characterisation of credences. Ramsey’s system fails to satisfy desid-

eratum (1): it’s not plausible that his preference conditions are satisfied by many agents 

at all, if any. 

Many expected utility representation theorems developed since ‘Truth and Probability’ 

have also made use of ethically neutral propositions, whether explicitly or implicitly. Da-

vidson and Suppes (1956, see also Davidson, Suppes et al. 1957) develop a representation 

theorem similar to Ramsey’s wherein they explicitly characterise and assume the exist-

ence of ethically neutral propositions. Others make implicit appeal to ethically neutral 

propositions, in the sense that they figure in the intended interpretation of the formal sys-

tem, rather than being formalised directly. In this capacity, for instance, we find ethical 

neutrality in the theorem of Debreu (1959), where ≽ is defined on pairs of outcomes, 

which are understood as representing two-outcome gambles conditional on some ethically 

neutral P for which the agent has a credence of ½. Fishburne (1967) makes implicit appeal 

to ethically neutral propositions of credence ½ along very similar lines. Each of these 

works appear to require an understanding of ethical neutrality in something like the senses 

of Definition 7.7 or Definition 7.8 (each for essentially the same reason that Ramsey re-

quired the notion), and thus they inherit the problems associated with RAM1. 



 

 

 

 

CHAPTER EIGHT 

Ramsey without Ethical Neutrality 

In this chapter, I will develop a representation theorem which comes close—both mathe-

matically and conceptually—to Ramsey’s original proposal for defining ℬel and 𝒟es, but 

which does not require the appeal to ethically neutral propositions in any problematic 

sense. As we will see, the theorem to be developed also has several unique characteristics 

which make it particularly well-suited for the representation of ordinary agents. 

Ramsey’s proposal was to first construct a utility function 𝒟es using preferences over 

outcomes and gambles, following which the credence function ℬel could be defined over 

a set of propositions. We will follow a similar tact here. §8.1 outlines the key ideas behind 

the theorem. §8.2 then supplies the core theorem needed for the construction of 𝒟es, while 

§8.3 provides the ensuing definition of ℬel. §8.4 discusses the interpretation of a key part 

of the theorem, and §8.5 places it in connection with characterisational representationism. 

8.1 Preliminaries 

Recall that Ramsey’s motivation for introducing the idea of ethical neutrality arises ulti-

mately from his strategy for defining propositions of credence ½ and =d (see §7.2.1). By 

adopting Ramsey’s definitions, one is essentially forced to appeal to ethically neutral 

propositions or else fall into the trap of applying Naïve Expected Utility Theory to cir-

cumstances where it’s both descriptively and normatively implausible. However, we are 

not forced to use Ramsey’s definitions. It is possible to avoid introducing ethical neutral-

ity in any of the problematic senses specified in §7.2.2, if we can develop alternative 

means of characterising propositions of credence ½ and =d. 

8.1.1 Interpretations 

Before we move on, it is worth saying a few words about the interpretation of the basic 

formal notions involved in the statement of the theorem: 𝒪, 𝒫, 𝒢, ≽, and a special relation 

⇀. First of all, and unlike Ramsey, I will not assume that 𝒪 should be comprised of either 

worlds or near-worlds. Instead, we will let 𝒪 be an arbitrary set of propositions. In the 

formal treatment, 𝒪 is essentially a set of points to be ordered by ≽, and no special as-
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sumptions need to be made about its internal structure. Thus, the framework to be devel-

oped here is compatible with a wide range of theories about the nature of propositions (or 

the nature of objects of thought more generally), and we do not need to assume that logi-

cally equivalent propositions are identical elements in 𝒪. 

An arbitrary set of propositions 𝒫 forms the domain of ℬel. It would be possible to 

suppose that every proposition in 𝒪 is in 𝒫 (and vice versa), but this is not required for 

the theorem that follows and so will not be assumed. Importantly, none of the propositions 

in 𝒫 need be very specific—in fact, they may be as fine-grained or coarse-grained as we 

like. Like 𝒪, the formal treatment of 𝒫 is compatible with many views on the nature of 

propositions, so logically equivalent propositions may form distinct elements of 𝒫. For 

the purposes of constructing ℬel, we will assume that 𝒫 is closed under negation. This is 

a simplifying assumption only; see §8.3.3. 

It is important for the result that follows that the propositions in 𝒪 might stand in im-

plication relations to the propositions in 𝒫. I will make use of a special binary relation 

between propositions, denoted ⇀; and in the event that P ⇀ Q and Q ⇀ P, we will write 

P ⇌ Q. As I will discuss in some detail in §8.4, I intend P ⇀ Q to mean that P obviously 

implies Q, where this is a non-transitive relation between pairs of propositions. For now, 

it should be assumed that for all P, Q,  

 

(i)  ⇀ is reflexive 

(ii)  ⇀ is neither symmetric nor antisymmetric 

(iii) If P ⇀ Q, then P ⇌ (P & Q) 

(iv)  If P ⇀ Q, then P ⊢ Q 

 

There are two important corollaries of (iv) to note: if P ⇌ Q, then P ↔ Q; and if P ⊬ Q, 

then ¬(P ⇀ Q). 

The space of gambles 𝒢 will be characterised as a proper subset of 𝒪 × 𝒫 × 𝒪. The 

exact manner in which 𝒢 is formalised is not especially important; however, it will be 

important that 𝒢 is restricted to gambles (o1, P; o2) such that: 

 

(i) o1 implies P and o2 implies ¬P 

(ii) If P is consistent, then o1 is consistent, and if ¬P is consistent, then o2 is consistent 

(iii) At least one of the pairs P and o1 or ¬P and o2 must be non-equivalent 

 

(i) helps to rules out the presence of what were earlier referred to as impossible gambles 

(Definition 7.5); a gamble will be found in 𝒢 only if its outcomes imply the conditions in 

which they are supposed to obtain. (ii) then completes the removal of impossible gambles 

from 𝒢, by ensuring (in combination with the first restriction) that if P and ¬P are con-

sistent then (o1 & P) and (o2 & ¬P) are consistent. The conjunction of (i) and (ii) thus 
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rules out the problematic state of affairs, discussed at the end of §7.2.1, where P is known 

to be possible but (o1 & P) is known to be impossible, leading to (o1, P; o2) being valued 

other than would be expected under the simple Naïve Expected Utility formula. (Note, 

though, that (ii) does not rule out gambles conditional on impossible propositions, nor 

does it rule out gambles with impossible outcomes—possible gambles may have impos-

sible parts!)89 Finally, (iii) rules out trivial gambles of the form (P, P; ¬P), which will be 

discussed further in §8.2.2. I precisify these restrictions in GRS1 below, and motivate 

them further in §8.4. 

Our preference relation ≽ will be defined on a space of outcomes 𝒪 and a space of 

gambles 𝒢 simultaneously. Since ≽’s domain is 𝒪 ∪ 𝒢, the elements of 𝒢 should be un-

derstood in a manner commensurate with those found in 𝒪, lest ≽ is given a highly dis-

junctive interpretation. Since 𝒪 is an arbitrary collection of propositions, ≽ on 𝒪 is best 

thought of as a mentalistic preference relation, and ≽ on 𝒢 should be treated similarly. In 

particular, I would suggest that (o1, P; o2) ≽ (o3, Q; o4) holds relative to a subject S just 

in case S would prefer (under considered reflection) the truth of that she has accepted a 

gamble that returns o1 if P, o2 otherwise to the truth of that she has made a gamble that 

returns o3 if Q, o4 otherwise.90 

As noted in §7.1.1, such preferences would reliably correspond to a disposition to 

choose a gamble (o1, P; o2) over (o3, Q; o4) inasmuch as the subject accurately represents 

the gambles on offer—but we should not presume that she always does. ≽ on 𝒪 ∪ 𝒢 

cannot be given a behavioural reading independent of substantive (and implausible) as-

sumptions about agents’ doxastic states. The theorem to be developed, therefore, will not 

satisfy the naturalistic desideratum (5). 

8.1.2 The basic strategy 

The key idea of the two theorems to be developed is that, while Ramsey used the same 

outcomes in two distinct gambles (o1, P; o2) and (o2, P; o1) to define what it is for a 

proposition to have credence ½, his doing so was unnecessary: it’s enough if we instead 

use outcomes with exactly the same desirability. That is, suppose that o1 ∼ o′1 and o2 ∼ 

 
89 I am assuming that (o1, P; o2) corresponds to a pair of subjunctive conditionals, (P □⟶ o1) & (¬P 

□⟶ o2). I also assume that counterfactuals with impossible antecedents are vacuously true, as they are on 

a standard semantics for counterfactuals. Given this, every gamble in 𝒢 corresponds to a possible conjunc-

tion of counterfactuals (while every impossible gamble corresponds to an impossible conjunction). I do not 

place very much weight on either of these assumptions—if some subjunctive conditionals with impossible 

antecedents are false, or if indicative conditionals are preferred and these admit of a quite distinct semantics, 

then further conditions can be placed on 𝒢 to fix on the appropriate set. 

90 Note that it would be possible to interpret each element o in 𝒪 as a gamble for o conditional on an 

obvious logical truth ⊤; i.e., as (o, ⊤; x), where x is any arbitrary proposition. It would not seem implausible 

to suppose that (o, ⊤; x) ≽ (o′, ⊤; x) iff o ≽ o′. 
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o′2, ¬(o1 ∼ o2), o1 and o′2 each imply P, while o2 and o′1 each imply ¬P, and finally, (o1, 

P; o2) ∼ (o′2, P; o′1). For now, I will continue to assume (as Ramsey did) that if o ⊢ P, 

then o ∼ (o & P); I will weaken this assumption in §8.4. Given this, and given the Ram-

seyan background assumption that “we act in the way that we think most likely to realize 

the objects of our desires” (§7.1.1), this situation is possible only if: 

 

𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)) = 𝒟es(o′2).ℬel(P) + 𝒟es(o′1).(1 – ℬel(P)) 

 

Since o1 ∼ o′1 and o2 ∼ o′2, we know 𝒟es(o1) = 𝒟es(o′1) = x and 𝒟es(o2) = 𝒟es(o′2) = y; 

and because ¬(o1 ∼ o2), we know that x ≠ y. Let ℬel(P) = z. We are left with: 

 

xz + y(1 – z) = yz + x(1 – z) 

 

Regardless of the specific values of x and y, this is possible only if z = (1 – z); thus, ℬel(P) 

= ½. There is no reason to require that P is ethically neutral. 

Making the foregoing modifications forces a number of further changes to the basic 

formal system Ramsey developed. There are two particularly important changes that I 

will note here, before laying out the main theorem in full. First, we can no longer employ 

Ramsey’s definition of =d. (Instead of defining =d, I will instead define ≥d.) However, we 

can employ the same trick as was just noted to avoid any appeal to ethical neutrality: there 

is no reason why (o1, o2) ≥
d (o3, o4) must be defined using o1, o2, o3, and o4 in particular. 

It’s enough if we use outcomes with exactly the same desirability. And for that matter, 

there is no reason why we need to use the same proposition in both gambles, so long as 

we use a proposition of credence ½. Instead, we can say (o1, o2) ≥
d (o3, o4) holds iff, for 

each (o′1, P; o′4), (o′2, P′; o′3) ∈ 𝒢 where P and P′ are both of credence ½, 

 

 (o′1, P; o′4) ≽ (o′2, P′; o′3) 

 

The reasoning behind this is essentially identical to the reasoning behind Definition 7.2. 

Secondly, we need to ensure that there are enough outcomes for the new definition of 

≥d to generally apply. That is, we need to assume that we will always be able to find the 

required gambles (o′1, P; o′4) and (o′2, P′; o′3) in 𝒢. This is not obviously going to be the 

case, given the earlier noted restriction on 𝒢. In effect, we need to assume that for every 

pair o1 and o2, there will always exist at least one proposition P of credence ½ such that 

for some o′1 ∼ o1 and o′2 ∼ o2, o′1 implies P and o′2 implies ¬P. This assumption implies 

that every value (see Definition 7.3) contains multiple members, and that at least two of 

these members will disagree with respect to some proposition P of credence ½. In effect, 

this assumption replaces Ramsey’s condition RAM1; it is formalised as GRS2 below. 
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8.2 Generalising Ramsey’s system 

I now develop a representation theorem for the construction of an interval scale 𝒟es on 𝒢 

and 𝒪 such that for all x, y ∈ 𝒪 ∪ 𝒢 and all o1, o2, o3, o4 ∈ 𝒪, 

 

x ≽ y iff 𝒟es(x) ≥ 𝒟es(y) 

(o1, o2) ≥d (o3, o4) iff 𝒟es(o1) – 𝒟es(o2) ≥ 𝒟es(o3) – 𝒟es(o4) 

 

I will begin with a statement of the definitions, preference conditions, and ensuing repre-

sentation theorem (§8.2.1), after which follows a discussion of each of the preference 

conditions (§8.2.2). 

8.2.1 Main representation theorem 

In what follows, I have adopted the notational convention that sameness of subscript for 

outcomes implies sameness of desirability (but the reverse need not hold). For instance, 

it should be assumed in all that follows that o′1 and o″1 each refer to outcomes with the 

same desirability as o1 (i.e. o1 ∼ o′1 and o′1 ∼ o″1). It should not be assumed, however, 

that either o′1 or o″1 is necessarily distinct from o1. Likewise, (o1, P; o2) should be under-

stood as a variable for gambles with outcome o1 if P, o2 otherwise; and (o′1, P; o′2) for 

gambles conditional on P with outcomes equal in value to o1 and o2. Again, the pair (o1, 

P; o2) and (o′1, P′; o′2) need not be distinct. 

We first define the set of propositions of credence ½: 

 

Definition 8.1: Π 

Π = {P ∈ 𝒫: there are o1, o2 ∈ 𝒪 such that (o1, P; o2), (o′2, P; o′1) ∈ 𝒢, ¬(o1 ∼ o2), and (o1, 

P; o2) ∼ (o′2, P; o′1)} 

 

Henceforth, I will use π, π′, and so on, to designate propositions within Π. It shouldn’t be 

assumed that π ≠ π′. Given this, I will use (o1, π; o2) specifically for gambles conditional 

on some π in Π (with outcomes o1 and o2). 

We can now define ≥d: 

 

Definition 8.2: ≥d 

(o1, o2) ≥d (o3, o4) iff (o′1, π; o′4) ≽ (o′2, π′; o′3) for all (o′1, π; o′4), (o′2, π′; o′3) ∈ 𝒢 

 

For the purposes of characterizing the Archimedean condition, we will also need to define 

a strictly bounded standard sequence. We can break this notion down into two concepts: 
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Definition 8.3: Standard sequence 

o1, o2, …, oi, … is a standard sequence iff (i) for all (o′2, π; o′1), (o″1, π′; o‴1) ∈ 𝒢, ¬((o′2, π; 

o′1) ∼ (o″1, π′; o‴1)), and (ii) for every oi, oi+1 in the sequence, (o′i+1, π; o′2) ∼ (o′1, π′; o′i) 

for all (o′i+1, π; o′2), (o′1, π′; o′i) ∈ 𝒢 

 

In light of the preference conditions to be characterised shortly, it will turn out that o1, o2, 

…, oi, … is a standard sequence iff (o2, o1) ≠
d (o1, o1) and (oi+1, oi) =

d (o2, o1) for all oi, 

oi+1 in the sequence. So, for instance, the sequence o1, o2, o3, o4 is a standard sequence 

just in case: 

 

 (o2, o1) ≠d (o1, o1) and (o4, o3) =d (o3, o2) =d (o2, o1) 

 

The idea, of course, is that the (nonzero) difference in desirability between any two adja-

cent members in the sequence is always equal to the difference in desirability between 

any other two adjacent members. 

 

Definition 8.4: Strictly bounded standard sequence 

o1, o2, …, oi, … is a strictly bounded standard sequence iff o1, o2, …, oi, … is a standard 

sequence and there exists oa, ob ∈ 𝒪 such that for all oi in the sequence, (o′a, π; o′i) ≻ (o′1, 

π′; o′b) and (o″i, π″; o″b) ≻ (o″a, π‴; o″1), for all (o′a, π; o′i), (o′1, π′; o′b), (o″i, π″; o″b), (o″a, 

π‴; o″1) ∈ 𝒢 

 

In other words, any standard sequence o1, o2, …, oi, … is strictly bounded if there are oa, 

ob ∈ 𝒪 such that for any oi in the sequence, (oa, ob) >
d (oi, o1) >

d (ob, oa). Essentially, 

regardless of the size of the interval between oi and o1, we can find outcomes in 𝒪 that 

are spaced even further apart.  

The coherence of the foregoing definitions will be ensured by the conditions GRS1–

9, which we can now specify.91 

 

Definition 8.5: Generalised Ramsey structures 

<𝒪, 𝒫, 𝒢, ≽> is a generalised Ramsey structure iff 𝒪 and 𝒫 are non-empty sets of proposi-

tions, 𝒢 ⊆ 𝒪 × 𝒫 × 𝒪, ≽ is a binary relation on 𝒪 ∪ 𝒢, and for all o1, o2 ∈ 𝒪, all sequences 

o1, o2, …, oi, … ∈ 𝒪, all P ∈ 𝒫, and all (o1, P; o2), (o1, π; o2), (o′2, π′; o′1), (o1, π; o4), (o2, 

π′; o3), (o3, π″; o6), (o4, π‴; o5) ∈ 𝒢, the following nine conditions hold: 

 
91 In (Elliott forthcoming), I define a ‘generalised Ramsey structure’ in a slight different manner than I 

have done here. The primary difference involves a change to the characterisation of 𝒪 (which is taken here 

as a set of consistent propositions rather than a set of worlds), which necessitates slightly different versions 

of GRS1 and GRS2. 
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GRS1 (o1, P; o2) ∈ 𝒢 iff (i) o1, o2 ∈ 𝒪, (ii) P ∈ 𝒫, (iii) o1 ⇀ P and o2 ⇀ ¬P, (iv) either P 

⊬ o1 or ¬P ⊬ o2, and (v) if P is consistent, then o1 is consistent, and if ¬P is 

consistent, then o2 is consistent 

GRS2 For every pair o1, o2 ∈ 𝒪, there exists a π ∈ Π such that for some o′1, o′2 ∈ 𝒪, (i) 

o′1 ⇀ π and o′2 ⇀ ¬π, (ii) either π ⊬ o′1 or ¬π ⊬ o′2, and (iii) if π is consistent, o1 

is consistent, and if ¬π is consistent, o2 is consistent 

GRS3 ≽ on 𝒪 ∪ 𝒢 is a weak ordering 

GRS4 If (o1, π; o2), (o′2, π′; o′1) ∈ 𝒢, then (o1, π; o2) ∼ (o′2, π′; o′1) 

GRS5 If (o1, π; o4) ≽ (o2, π′; o3) and (o3, π″; o6) ≽ (o4, π‴; o5), then, for all (o′1, π*; o′6), 

(o′2, π+; o′5) ∈ 𝒢, (o′1, π*; o′6) ≽ (o′2, π+; o′5) 

GRS6 For every triple o1, o2, o3 ∈ 𝒪, there is a o4 ∈ 𝒪 such that for some (o′1, π; o′3), (o4, 

π′; o′2) ∈ 𝒢, (o′1, π; o′3) ∼ (o4, π′; o′2) 

GRS7 If o1, o2, …, oi, … is a strictly bounded standard sequence, it is finite 

GRS8 o1 ≽ o2 iff for all (o′1, P; o′2) ∈ 𝒢, o1 ≽ (o′1, P; o′2) ≽ o2 

GRS9 For each (o1, P; o2) ∈ 𝒢, there is a o3 ∈ 𝒪 such that (o1, P; o2) ∼ o3 

 

We can now state the main representation theorem: 

 

Theorem 8.1: Generalised Ramseyan utility 

If <𝒪, 𝒫, 𝒢, ≽> is a generalised Ramsey structure then there is a function 𝒟es: 𝒪 ∪ 𝒢 ↦ ℝ 

such that for all x, y ∈ 𝒪 ∪ 𝒢 and all o1, o2, o3, o4 ∈ 𝒪, 

(i) x ≽ y iff 𝒟es(x) ≥ 𝒟es(y) 

(ii) (o1, o2) ≥d (o3, o4) iff 𝒟es(o1) – 𝒟es(o2) ≥ 𝒟es(o3) – 𝒟es(o4) 

Furthermore, 𝒟es is unique up to positive linear transformation 

 

A proof is provided in Appendix A. The strategy behind the proof is closely connected to 

Ramsey’s process; viz., given the agent’s preferences over outcomes and gambles, we first 

determine the relation ≥d between pairs of outcomes and on that basis construct an interval 

scale measurement of the agent’s preferences. The most important step here is to establish 

that if <𝒪, 𝒫, 𝒢, ≽> is a generalised Ramsey structure, then <𝒪 × 𝒪, ≥d> is an algebraic 

difference structure: 

 

Definition 8.6: Algebraic difference structure  

<𝒳 × 𝒳, ≽*> is an algebraic difference structure iff 𝒳 is non-empty, ≽* is a binary relation 

on 𝒳 × 𝒳, and for all x1, x2, x3, x4, x′1, x′2, x′3 ∈ 𝒳, and all sequences x1, x2, …, xi, … ∈ 𝒳, 

the following five conditions hold: 

ADS1  ≽* on 𝒳 × 𝒳 is a weak ordering 

ADS2  If (x1, x2) ≽* (x3, x4), then (x4, x3) ≽* (x2, x1) 

ADS3  If (x1, x2) ≽* (x4, x5) and (x2, x3) ≽* (x5, x6), then (x1, x3) ≽* (x4, x6) 
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ADS4  If (x1, x2) ≽* (x3, x4) ≽* (x1, x1), then there exist x5, x6 ∈ 𝒳 such that (x1, x5) ∼* 

(x3, x4) ∼* (x6, x2) 

ADS5  If x1, x2, …, xi, … is such that (xi+1, xi) ∼* (x2, x1) for every xi, xi+1 in the sequence, 

¬((x2, x1) ∼* (x1, x1)), and there exist x′, x″ ∈ 𝒳 such that (x′, x″) ≻* (xi, x1) ≻* 

(x″, x′) for all xi in the sequence, then it is finite 

 

This allows us to invoke the following theorem: 

 

Theorem 8.2: Algebraic difference measurement 

If <𝒳 × 𝒳, ≽*> is an algebraic difference structure, then there exists a real-valued function 

ℱ on 𝒳 such that, for all x1, x2, x3, x4 ∈ 𝒳,  

(i) (x1, x2) ≽* (x3, x4) iff ℱ(x1) – ℱ(x2) ≥ ℱ(x3) – ℱ(x4) 

Furthermore, ℱ is unique up to positive linear transformation 

 

For a proof of Theorem 8.2, see (Krantz, Luce et al. 1971, Ch. 4). 

8.2.2 Generalised Ramsey structures 

We now turn to a discussion of the conditions GRS1–9 before looking at how to derive 

the credence function ℬel. Though none of the conditions are identical to any of Ram-

sey’s, many of them bear a close resemblance to the conditions and assumptions men-

tioned in his paper. It is worth noting that none of the conditions are intended to be inde-

pendently plausible qua norms of practical rationality, though at least a few may seem to 

have this status.92 As with Ramsey’s formal system, the goal here is to establish condi-

tions for the possibility of utility measurement under the assumption of the broad descrip-

tive adequacy of something like expected utility theory—we aren’t directly interested in 

establishing foundations for a prescriptive decision theory. 

The purely structural condition GRS1 does not correspond to any of Ramsey’s condi-

tions or any of the further assumptions he mentions. It is worth saying a few words about 

the fact that GRS1 requires that (o1, P; o2) is in 𝒢 only if P ⊬ o1 or ¬P ⊬ o2. This assump-

tion is not needed to prove Theorem 8.1, but it’s important nonetheless. In particular, 

stating GRS1 as such will help us to avoid a conflict between GRS8 and a plausible 

 
92 Plausibly, GRS3, GRS4, and GRS8 are constraints of practical rationality. I am inclined to take 

GRS5 as a rationality constraint, though this is difficult to justify without presupposing the norm of ex-

pected utility maximisation. The status of the Archimedean condition GRS7 is unclear, though representa-

tion theorems that forego an Archimedean condition can be developed, e.g., (Bartha 2007). The existential 

conditions GRS2, GRS6, and GRS9 are not plausibly rationality constraints, but there is also a sense in 

which they are less important vis-à-vis the T-representability of ≽ on 𝒪 ∪ 𝒢—namely, to the extent that 

they fail, ℬel and 𝒟es may be undefined for some propositions but not necessarily all (or even most). GRS1 

is a purely structural condition, and places no constraints on any agent whether ideal or not. 
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intuition about preferences over trivial gambles. Suppose, in particular, that o1 = P and o2 

= ¬P, so given the proposed interpretation of gambles, (o1, P; o2) represents that S has 

accepted a gamble that returns P if P, ¬P otherwise. GRS8 asserts that the value of (o1, 

P; o2) should be somewhere between the values of o1 and o2. But now suppose that we 

have another gamble, (o3, Q; o4), where o3 = Q, and o4 = ¬Q; and suppose also that o1 ≻ 

o2 ≻ o3 ≻ o4. Both (o1, P; o2) and (o3, Q; o4) represent utterly uninteresting prospects, and 

it would seem only rational to be indifferent between the two. This is, however, ruled out 

by GRS8, which now requires that (o1, P; o2) ≻ (o3, Q; o4). 

GRS1 removes these kinds of trivial gambles from consideration. And this seems to 

be as it should be—trivial gambles of the form (P, P; ¬P) aren’t really gambles at all—

in a choice between two trivial gambles absolutely nothing is risked (or gained) one way 

or another. There is, therefore, no reason to consider one’s credences and utilities regard-

ing P and ¬P: trivial gambles are a special case where credences over the gamble’s con-

ditions and utilities for the gambles outcomes are irrelevant. On the other hand, where 

either P ⊬ o1 or ¬P ⊬ o2, (o1, P; o2) represents an interesting choice, and one where 

decision-makers’ credences in P/¬P and utilities for o1/o2 seem very relevant. 

In light of GRS1, GRS2 essentially asserts that for every pair of outcomes o1 and o2, 

we will find at least one gamble in 𝒢 conditional on some π in Π with outcomes equal in 

value to o1 and o2. It plays a very similar foundational role to RAM1; it is involved in 

most of the major steps of the proof of Theorem 8.1. However, GRS2 is by far the more 

plausible condition. It implies the existence of a set of propositions, Π, such that the agent 

prefers as though she believes each member of the set to degree ½, but none of them have 

to be ethically neutral in any of the senses defined in §7.2.2. Furthermore, unlike RAM1*, 

GRS2 does not require that every outcome has to be compatible with both the truth and 

falsity of at least one proposition in Π. Given this, and independently of whatever might 

be said regarding its intrinsic plausibility, the use of GRS2 as the basis for a representa-

tion theorem constitutes a substantial advance over Ramsey’s system. 

However, despite being more plausible than RAM1 (and moreover RAM1*), GRS2 

is nevertheless likely to be somewhat contentious. It implies, for instance, that every value 

o contains at least two outcomes o and o′ that differ with respect to their compatibility 

with some π in Π. It’s plausible that for many values—perhaps even most—we will be 

able to find such a proposition. Consider, for instance, the following situation. Our subject 

has no intrinsic interest in the outcomes of coin tosses. Let o be an arbitrary consistent 

outcome; and let π be the proposition the next fair coin to be tossed lands heads. Then, 

suppose that o′ is (o & π), while o″ is (o & ¬π).93 Plausibly, o ∼ o′ ∼ o″, while o′ (obvi-

ously) implies π and o″ (obviously) implies ¬π, but neither π nor ¬π imply either o′ or o″. 

 
93 If necessary, we might also suppose that no bets are made on the relevant coin toss, nor does its 

outcome affect history in any important way of interest to the decision-maker. 
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Importantly, GRS2 is compatible with the possibility that some outcomes (or even most 

outcomes) o*, (o* & π) and (o* & ¬π) might be valued quite differently. 

The case just given suggests that for most outcomes we should be able to find a prop-

osition of credence ½ which satisfies the conditions of GRS2. The condition seems to be 

at least approximately satisfied in this sense—for any outcome o, we should be able to 

find another outcome which is equivalent in all respects that the agent cares about but for 

the event of a fair coin toss. But it’s still not obviously the case that this holds for every 

value o. Perhaps there are some outcomes which are unique in their desirability ranking, 

being equal in value to no other; or perhaps there are some values which contain multiple 

outcomes, but none of which disagree with respect to any proposition of credence ½. This 

circumstance would seem to be rare if it occurs at all, and if so it would not be a devas-

tating problem—it would primarily mean that sometimes, ≥d on 𝒪 × 𝒪 is undefined. Some 

pairs of outcomes might be left out of the ≥d comparison, but the relation would never-

theless still be a well-defined order on the others. It would likely be possible (though not 

without added complexity) to prove a weaker representation result, which leaves utility 

values for certain outcomes (and correspondingly, credence values for certain proposi-

tions) unspecified or within constrained intervals. 

GRS3 corresponds closely to RAM3, and as we have seen, it is a standard necessary 

condition in decision-theoretic representation theorems. Although it is a very simple (and 

descriptively very plausible) condition, the role of GRS4 is complex. No condition like 

it is in Ramsey’s system, though amongst other things it plays many of the same roles as 

RAM2. In a manner of speaking, it says that the rational agent treats in the same way all 

prospects with similarly valued outcomes conditional on any proposition of credence ½. 

It tells us that we can substitute one outcome o1 for another o′1 within a gamble, or one 

proposition of credence ½ for another, so long as the outcomes have the same desirabili-

ties and the substitution results in a possible gamble. So, for example, if o1 and o′1 have 

the same desirability and both are compatible with the propositions π and π′, then (o1, π; 

o2) ∼ (o′1, π′; o2). It also allows that we can change the order of outcomes, in the sense 

that if (o1, π; o2) and (o′2, π; o′1) are both possible gambles, then (o1, π; o2) ∼ (o′2, π; o′1). 

GRS4 helps to ensure the coherence of the definitions of Π, ≥d, and of ℬel. 

GRS5 is designed to play the same role as RAM4. In light of the other conditions, it 

effectively asserts the reasonable proposition that ≥d is transitive, which is crucial for 

establishing that <𝒪 × 𝒪, ≥d> satisfies ADS1 and ADS3 of Definition 8.6. The existential 

requirement GRS6 is essentially a restatement of RAM5. Its role is limited to establishing 

that <𝒪 × 𝒪, ≥d> satisfies ADS4, and is thus (like ADS4) a non-necessary structural con-

dition. GRS7 is the Archimedean condition; appropriately translated, it simply asserts 

that <𝒪 × 𝒪, ≥d> satisfies ADS5. 

GRS1–7 are sufficient to establish that <𝒪 × 𝒪, ≥d> is an algebraic difference structure, 

which entails the existence of a real-valued function 𝒟es on 𝒪 with the aforementioned 
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properties. GRS8–9 are then used to ensure that 𝒟es T-represents ≽ on 𝒪 ∪ 𝒢. These final 

two conditions also play central roles in the construction of a credence function ℬel. 

GRS8 does not correspond to any of Ramsey’s stated conditions or any of the assump-

tions he otherwise mentions, though he clearly presupposed something like it. It states 

that the utility of a (non-trivial, possible) gamble (o1, P; o2) sits somewhere weakly be-

tween the utilities of o1 and o2, which seems highly reasonable. This ensures that: 

 

𝒟es(o1) ≥ 𝒟es(o2) iff o1 ≽ o2 

 

It also helps to ensure that ℬel will never supply us with credence values of less than 0 or 

greater than 1. 

The sole formal role of the existential condition GRS9 is to ensure that we can extend 

𝒟es on 𝒪 to 𝒪 ∪ 𝒢; it is perhaps identical to what Ramsey intended for his RAM7. It 

necessitates the existence, for each gamble, of an outcome that is directly comparable 

with that gamble. Given the non-triviality of ≻ on 𝒪 ∪ 𝒢 (ensured by GRS2) and that, if 

o1 ≻ o2, then o1 ≻ (o1, π; o2) ≻ o2, GRS9 forces the set of outcomes to be infinite. In this 

respect, it’s similar to Ramsey’s RAM6, though it plays a quite different role than what 

Ramsey had intended for his condition. This is also likely to be a contentious condition; 

though here it is noteworthy that the assumption is not necessary for the main represen-

tation result. Other means of extending 𝒟es to 𝒪 ∪ 𝒢 are also likely possible in lieu of 

GRS9. Indeed, GRS8 is alone enough to ensure that 𝒟es((o1, P; o2)) sits somewhere 

weakly between 𝒟es(o1) and 𝒟es(o2). The failure of GRS9 implies that, potentially but 

not necessarily, ℬel as it will shortly be characterised may be undefined for some P ∈ 𝒫. 

8.3 Constructing ℬel 

Let us suppose that <𝒪, 𝒫, 𝒢, ≽> satisfies GRS1–9; our goal then is to construct a cre-

dence function ℬel on 𝒫 using 𝒟es on 𝒪 ∪ 𝒢, which combines with 𝒟es to form an ex-

pected utility T-representation of ≽ on 𝒪 ∪ 𝒢. I will begin with a statement of the new 

conditions needed and the ensuing representation theorem (§8.3.1), after which I will note 

some interesting properties of the representation (§8.3.2), before discussing the new con-

ditions—and possible weakenings thereof—in §8.3.3. 

8.3.1 Secondary representation theorem 

Closely following Ramsey’s suggestion (§7.1.5), we can define ℬel as follows: 
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Definition 8.7: ℬel 

For all P ∈ 𝒫, if o1, o2 ∈ 𝒪 are such that ¬(o1 ∼ o2) and (o1, P; o2) ∈ 𝒢, then ℬel(P) = 

(𝒟es((o1, P; o2)) – 𝒟es(o2))/(𝒟es(o1) – 𝒟es(o2)) 

 

As with Ramsey’s Definition 7.4, ℬel so-defined is unique. 

There are three further conditions to add before we complete our construction of ℬel. 

First of all, to ensure that there are enough gambles for ℬel(P) to always be defined, we 

will need to add the following structural condition to the previous nine preference condi-

tions: 

 

GRS10 For all P ∈ 𝒫, there’s at least one pair o1, o2 ∈ 𝒪 such that (i) ¬(o1 ∼ o2), (ii) o1 ⇀ 

P and o2 ⇀ ¬P, (iii) either P ⊬ o1 or ¬P ⊬ o2, and (iv) if P is consistent, then o1 is 

consistent, and if ¬P is consistent, then o2 is consistent 

 

Should GRS10 fail, ℬel will be undefined for any proposition such that outcomes satis-

fying the stated conditions cannot be found. 

Secondly, to ensure that ℬel(P) is always equal to (1 – ℬel(¬P)), we will also assume 

that: 

 

GRS11 For all (o1, P; o2), (o2, ¬P; o1) ∈ 𝒢, (o1, P; o2) ∼ (o2, ¬P; o1) 

 

GRS11 leads to condition (iv) of Theorem 8.3, but plays no other role besides this. It 

seems a very weak condition; it essentially states that the order in which outcomes are 

presented in a gamble makes no difference to their value. Another way to motivate 

GRS11 would be to say that, despite being separate objects in 𝒢, (o1, P; o2) and (o2, ¬P; 

o1) are mere notational variants representing the very same object of preference. If this is 

the case, then GRS11 will fall out as a consequence of the intended interpretation of 𝒢 

and ≽. 

Thirdly, we will also need to assume the following special condition, stated in terms 

of 𝒟es rather than in terms of preferences, to ensure the coherence of Definition 8.7: 

 

Condition 1: ℬel coherence 

For all (o1, P; o2), (o3, P; o4) ∈ 𝒢 where ¬(o1 ∼ o2) and ¬(o3 ∼ o4), (𝒟es((o1, P; o2)) – 

𝒟es(o2))/(𝒟es(o1) – 𝒟es(o2)) = (𝒟es((o3, P; o4)) – 𝒟es(o4))/(𝒟es(o3) –𝒟es(o4)) 

 

Condition 1 is a formal restatement of one of the conditions that Ramsey briefly mentions 

are required to ensure the coherence of the ℬel function (see §7.1.5). What it says can be 

visualised as follows. Definition 8.7 tells us that ℬel(P) is, say, 0.75, if it is the case that 

o1 ≻ o2 and the value of the gamble (o1, P; o2) sits exactly three quarters of the way from 
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the values of o2 to o1. Condition 1 then tells us that for all o3, o4 such that o3 ≻ o4, if the 

gamble (o3, P; o4) exists then it also sits three quarters of the way between o4 and o3 in 

the agent’s desirability scale (and if o4 ≻ o3, then (o3, P; o4) is one quarter of the distance 

between o4 and o3). This directly implies that the value ℬel(P) does not depend on which 

outcomes and gambles we choose to consider. 

I have chosen to state Condition 1 in terms of 𝒟es as there is no apparent straightfor-

ward means of stating it purely in terms of preferences. Since 𝒟es is constructed entirely 

from preferences, Condition 1 is equivalent to some (perhaps infinitary) condition on 

preferences. Importantly, though, Condition 1’s content is more transparent when ex-

pressed in terms of 𝒟es, which requires of course that 𝒟es has already been characterised. 

Davidson and Suppes’ (1956) condition A10 achieves the same purpose as my Condition 

1 without referring to the intended T-representation, but only through a complicated series 

of definitions that serve to obscure its content—which is ultimately very similar to what 

Condition 1 says. 

I will show in a moment that there is a way in which the definition of ℬel can be altered 

so as to remove the need for Condition 1—but for now, we now have the resources with 

which to construct an expected utility T-representation of ≽ on 𝒪 ∪ 𝒢: 

 

Theorem 8.3: Generalised Ramseyan credence and utility 

If <𝒪, 𝒫, 𝒢, ≽> is a generalised Ramsey structure where 𝒫 is closed under negation, and 

GRS10–11 and Condition 1 hold, then there is a function 𝒟es: 𝒪 ∪ 𝒢 ↦ ℝ and a function 

ℬel: 𝒫 ↦ [0, 1] that for all x, y ∈ 𝒪 ∪ 𝒢, all o1, o2, o3, o4 ∈ 𝒪, all (o1, P; o2) ∈ 𝒢, and all P ∈ 

𝒫, 

(i) x ≽ y iff 𝒟es(x) ≥ 𝒟es(y) 

(ii) (o1, o2) ≥d (o3, o4) iff 𝒟es(o1) – 𝒟es(o2) ≥ 𝒟es(o3) – 𝒟es(o4) 

(iii) 𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)) 

(iv) ℬel(P) = 1 – ℬel(¬P) 

Furthermore, ℬel is unique and 𝒟es is unique up to positive linear transformation 

 

A proof can be found in Appendix A. 

8.3.2 Properties of ℬel 

It is important to note that ℬel need not be a probability function (though it is not incon-

sistent with the conditions that it could be); thus Theorem 8.3 is an NCU theorem. It is, 

however, a credence function, in that it maps propositions to some value within [0, 1]. 

The main restriction on ℬel is that if π ∈ Π, then ℬel(π) = ½, and there must be at least 
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two π ∈ Π.94 I am inclined to take ℬel’s potential lack of structure as a feature, not a bug. 

Plausibly, ordinary agents don’t have probabilistically coherent (i.e., additive, monotonic) 

degrees of belief, so any representation of credences which requires such coherence is 

flawed. 

The reason for ℬel’s permissiveness is that GRS1–11 and Condition 1 jointly place 

very few restrictions on preferences for gambles conditional on propositions outside of 

Π. For instance, suppose that neither P nor Q are in Π, P implies but is not equivalent to 

Q, ¬(o1 ∼ o2), and the agent is to rank the two gambles (o1, P; o2) and (o1, Q; o2). Only 

GRS3, GRS8–9, and Condition 1 can have any impact on how these gambles are ranked, 

as the other conditions are either purely existential or refer only to gambles conditional 

on propositions of credence ½. GRS9 only asserts the existence of some o3 and o4 such 

that o3 ∼ (o1, P; o2) and o4 ∼ (o1, Q; o2), while GRS8 only asserts that both (o1, P; o2) and 

(o1, Q; o2) must be valued somewhere between o1 and o2. Finally, Condition 1 only re-

stricts the relative rankings of gambles conditional on the same proposition. All of these 

conditions, along with GRS3, can clearly be satisfied even if (o1, P; o2) ≻ (o1, Q; o2). 

Assuming all the other conditions to be satisfied, it follows immediately that if (o1, P; o2) 

≻ (o1, Q; o2), then ℬel(P) > ℬel(Q). Hence, ℬel in this instance is not a probability func-

tion, nor even a capacity. 

Theorem 8.3 is thus compatible with an extremely wide range of credence functions. 

Indeed, ℬel is capable of assigning values of greater than 0 to impossible propositions, 

and less than 1 to necessary propositions. In §8.4, I will suggest a further condition which 

ensures that 𝒟es(P) = 𝒟es(Q) and ℬel(P) = ℬel(Q) if P ⇌ Q; thus, we can reasonably 

expect that any obvious impossibilities are assigned a credence of 0, and any obvious 

logical necessities a credence of 1. With further preference conditions, it’s possible to 

ensure that ℬel satisfies particular structural properties, such as a weakened form of mon-

otonicity: if P ⇀ Q, then ℬel(Q) ≥ ℬel(P). For details, see (Elliott forthcoming).  

Also important to note is that none of the propositions assigned values by ℬel (or 𝒟es) 

need be very specific—in fact, they can for the most part be as fine-grained or as coarse-

grained as we like. Because the formal treatment of propositions in Theorem 8.3 places 

so few constraints on the internal structure of either 𝒪 or 𝒫, we need not suppose anything 

as strong as, say, Jeffrey’s assumption that 𝒫 (minus a set of null propositions) forms a 

bottomless algebra with ever-increasingly fine-grained contents (§6.2). 

Furthermore, ℬel and 𝒟es need not have wholly disjoint, non-overlapping domains. 

Indeed, ℬel and 𝒟es can be defined on precisely the same domain, or at least very similar 

domains. The main structural restriction here is GRS10, which is required if ℬel is to be 

 
94 The reasoning of §7.1.2 essentially counts as a proof that for all π ∈ Π, ℬel(π) = ½. That there is at 

least one proposition in Π follows immediately from GRS2 and Definition 8.1, and that its negation (or 

something logically equivalent) is also in Π then follows from GRS11/GRS11’. 
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defined for all propositions in 𝒫. (The falsity of this condition is compatible with ℬel 

being defined for almost all of 𝒫.) Allowing that 𝒫 = 𝒪 is consistent with GRS10, but 

does not imply it: setting 𝒫 = 𝒪 ensures that there will always be o1, o2 ∈ 𝒪 such that o1 

⇀ P, o2 ⇀ ¬P, for each P ∈ 𝒫 (viz., P and ¬P themselves). However, this is not yet enough 

to guarantee the other conditions—for example, that the relevant o1 and o2 will be such 

that ¬(o1 ∼ o2), which GRS10 also requires. I see no reason to think that the further con-

ditions would not also be satisfied were we to assume that 𝒫 = 𝒪—although if they are 

not, at most we would only require a few more propositions in 𝒪 than in 𝒫 (or ℬel could 

be left undefined for some propositions). Theorem 8.3 is unusual in this respect amongst 

multiset theorems, where ℬel and 𝒟es are usually required to have different domains. 

8.3.3 Ways of weakening 

There are (at least) two ways in which the conditions used to establish Theorem 8.3 can 

be weakened, leading to slightly different results. First of all, although we have assumed 

that 𝒫 must be closed under negation, this is a simplifying assumption made to ensure 

that for any P ∈ 𝒫, ℬel(¬P) is defined. By making some reasonable assumptions about 

the character of ⇀, we can remove the closure condition and prove a slightly different 

result. Specifically, suppose that: 

 

(a)  If P ⇌ Q, then R ⇀ P only if R ⇀ Q 

(b)  ¬P ⇌ Q iff ¬Q ⇌ P 

 

Then, replace GRS11 with: 

 

GRS11’ For all P ∈ 𝒫, there is a Q ∈ 𝒫 such that ¬P ⇌ Q, and if (o1, P; o2), (o2, Q; o1) ∈ 

𝒢, then (o1, P; o2) ∼ (o2, Q; o1) 

 

Given this, we can replace property (iv) of Theorem 8.3 with: 

 

(iv′) For all P, Q ∈ 𝒫, if Q is such that ¬P ⇌ Q, then ℬel(P) = 1 – ℬel(Q)95 

 

This would avoid any need for assuming that if P is in 𝒫, then so is ¬P, ¬¬P, ¬¬¬P, and 

so on. In particular, suppose that P and ¬P are in 𝒫. Clearly, with respect to P, there is a 

 
95 Proof: If P ∈ 𝒫 then there will be some (o1, P; o2) ∈ 𝒢 by GRS1 and GRS10. Our suppositions (i) 

and (ii) about ⇀ plus GRS1 then imply that if the relevant Q exists in 𝒫, then (o2, Q; o1) will be in 𝒢 as 

well. The first part of GRS11’ then implies that the relevant Q can be found in 𝒫, and the second part 

implies that ℬel(P) = 1 – ℬel(Q), for essentially the reasons given in the proof of property (iv) of Theorem 

8.3 in the Appendix A.  
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Q ∈ 𝒫 such that ¬P ⇌ Q; namely, ¬P. So we can say ℬel(P) = 1 – ℬel(¬P). However, 

instead of going on to say that ℬel(¬P) = 1 – ℬel(¬¬P)—in which case ℬel(¬¬P) would 

need to be defined, which would lead to ℬel(¬¬¬P) needing to be defined, and so on—

we can suppose that P is such that ¬[¬P] ⇌ P, so ℬel(¬P) = 1 – ℬel(P). Thus, instead of 

requiring infinitely iterated negations, we can simply suppose that all (or most) of the 

propositions P in 𝒫 can be paired with another proposition Q in 𝒫 which is ⇌-equivalent 

to P’s negation. 

Secondly, it is clear that Condition 1 is quite strong. Its satisfaction could only be 

expected of an agent who is extraordinarily consistent with respect to her preferences over 

gambles—in effect, it requires that for all the relevant gambles conditional on P, the agent 

has preferences as though she were a flawless expected utility maximiser with an infi-

nitely precise credence in P. (It is because of Condition 1 that ℬel is a credence function, 

which is only capable of assigning point-like credence values to propositions.) This is 

more than we can expect of any ordinary subject. As it turns out, however, we can do 

without Condition 1 with some tweaks to the definition of ℬel: 

 

Definition 8.8: ℬel* 

For all P ∈ 𝒫, ℬel*(P) = [λ1, λ2] if and only if [λ1, λ2] is the smallest interval such that for 

any (o1, P; o2) ∈ 𝒢 where ¬(o1 ∼ o2), (𝒟es((o1, P; o2)) – 𝒟es(o2)) / (𝒟es(o1) – 𝒟es(o2)) ∈ 

[λ1, λ2] 

 

Note that ℬel* will be unique, in the sense that for any P there is only one smallest interval 

[λ1, λ2] such that (𝒟es((o1, P; o2)) – 𝒟es(o2)) / (𝒟es(o1) – 𝒟es(o2)) ∈ [λ1, λ2] for any (o1, 

P; o2) where ¬(o1 ∼ o2). This is for essentially the same reason that ℬel is unique. 

Here is the intuitive idea behind ℬel*. Definition 8.7 essentially says that ℬel(P) = 1/n 

just in case the agent treats all gambles conditional on P as though she assigns a credence 

of 1/n to P, in the sense that the value of 𝒟es for all gambles (o1, P; o2) with o1 ≻ o2 sit 

1/n of the way between o1 and o2. Definition 8.8, on the other hand, allows for some 

variability in the agent’s preferences with respect to gambles conditional on P, and ℬel* 

represents that variation by means of an interval. For example, suppose that o1 ≻ o2 ≻ o3 

≻ o4, and that on the one hand the agent’s value for (o1, P; o2) sits ½ way between her 

values for o1 and o2, while on the other hand her value for (o3, P; o4) is ¼ of the way 

between o3 and o4. For simplicity, suppose first of all that (o1, P; o2) and (o3, P; o4) are 

the only gambles conditional on P. Then, ℬel*(P) would be [¼, ½]. If there were one 

more gamble to consider—say, (o1, P; o4)—and its value sat ⅓ of the way between the 

values of its outcomes, then ℬel*(P) would remain unchanged; however, if it was ⅕ of 

the way, then ℬel*(P) would equal [⅕, ½]. 

Notice that if Condition 1 is satisfied, then ℬel(P) = n just in case ℬel*(P) = [n, n]. 

Thus, ℬel* can be seen as a generalisation of ℬel, the latter reducing to the former in the 
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special case that Condition 1 holds. Importantly, though, Definition 8.8 does not require 

Condition 1 (or any other special conditions) to be satisfied in order for ℬel* to be defined 

for any proposition in 𝒫. Given GRS11, property (iv) of Theorem 8.3 would be replaced 

with: 

 

(iv″)  ℬel*(P) = [λ1, λ2] iff ℬel*(¬P) = [1 – λ2, 1 – λ1] 

 

Note that dropping Condition 1 and adopting Definition 8.8 would mean that the expected 

utility T-representation of 𝒟es on 𝒢 would also need to be altered slightly; in particular, 

instead of condition (iii) as stated in Theorem 8.3, we would now need to say that for each 

(o1, P; o2) ∈ 𝒢, 

 

(iii′) 𝒟es((o1, P; o2)) = 𝒟es(o1).λ + 𝒟es(o2).(1 – λ), for some λ ∈ ℬel*(P) 

 

The most plausible way to understand ℬel* is to take it as providing us with a limit on 

any adequate measure of the agent’s credences towards P, given her preferences and un-

der the assumption that she at least approximately evaluates the utility of gambles accord-

ing to their expected utility. In other words, I would suggest that ℬel*(P) = [λ1, λ2] tells 

us that the agent’s preferences constrain what her credence in P may be at least down to 

[λ1, λ2], on the presupposition that she approximates the norm of expected utility maxi-

misation. This reading of ℬel* is compatible with a range of possibilities. For instance, 

ℬel*(P) = [λ1, λ2] would be consistent with the agent having a sharp credence for P any-

where within [λ1 ,λ2]—in which case she is presumably somewhat inconsistent with re-

spect to how she evaluates the utilities of gambles conditional on P. It is also compatible 

with the agent having imprecise credences accurately measured by some interval within 

[λ1, λ2], including but not necessarily [λ1, λ2] itself. I do not think either of these interpre-

tations should be given priority over the others; at best, ℬel*(P) = [λ1, λ2] should only be 

taken to mean that whatever the true measure of the agent’s credences regarding P may 

be, it (most likely) sits somewhere within [λ1, λ2]. Further information would need to be 

considered to determine where exactly the agent’s credences in P should be located. 

A theorem without Condition 1 seems desirable for characterisational representation-

ism, but I want to draw a more general lesson from the present discussion. Condition 1 is 

a strong requirement, but its strength is directly connected to the strict requirements that 

have been placed the intended T-representation of ≽. Without the full strength of the con-

dition, there would not exist any credence function ℬel such that for all (o1, P; o2) ∈ 𝒢, 

 

(iii) 𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)) 

 

In this sense, Condition 1 is necessary for the existence of the T-representation. 
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But even where these kinds of conditions fail, there will usually be a closely related 

result in the vicinity. Roughly put, there is in general some wriggle-room with respect to 

preference conditions—ways to loosen the rather strict requirements they impose—so 

long as we are prepared to live with a somewhat less precise T-representation.96 ℬel* is 

one instance of this possibility, but we should expect that there are more. In particular, it 

should be expected that the precision of 𝒟es is a consequence of the sometimes rather 

strict conditions imposed by GRS1–9, and it would be possible to loosen these conditions 

to arrive at a more general utility function for the T-representation of ≽ on 𝒪 ∪ 𝒢. 

8.4 Two interpretations of ⇀  

I have allowed that logically equivalent propositions may be counted as distinct elements 

in 𝒪 and 𝒫, and for that reason ℬel and 𝒟es are capable of distinguishing between logical 

equivalencies. However, we must be very careful about what we say here, as much hangs 

on how we interpret ⇀. 

Suppose that o ⇀ P means o ⊢ P. As discussed in §7.2.1, if we make the Indifference 

to Equivalent Conjunctions assumption (that P ∼ (P & Q) whenever P ⊢ Q), then we can 

apply the Naïve Expected Utility formula to any gamble where the outcomes entail the 

conditions under which they obtain. This was an important (albeit implicit) background 

assumption behind Ramsey’s Representation Conjecture—and as we will see—some-

thing similar is needed to underlie Theorem 8.3. Equating ⇀ with ⊢ comes with rather 

severe interpretational difficulties, however. 

To get a grip on the central problem here, suppose first of all that o1 ⊢ o2, and that o1 

and (o1 & o2) are in 𝒪 and in 𝒫. Given Indifference to Equivalent Conjunctions, it should 

be the case that o1 ∼ (o1 & o2). However, this is not implied by any of the conditions 

GRS1–11. Consistently with those conditions, then, the agent might prefer o1 to (o1 & 

o2). But now suppose that o2 = P for some P ∈ 𝒫. Theorem 8.3 then tells us that:  

 

𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)) 

 

But this is surely wrong. By Theorem 8.1, 𝒟es(o1) ≠ 𝒟es(o1 & P), and because we wish 

to avoid applying Naïve Expected Utility Theory where that theory is inappropriate, the 

value of (o1, P; o2) should be given by: 

 

𝒟es(o1 & P).ℬel(P) + 𝒟es(o2 & ¬P).(1 – ℬel(P))  

 

 
96 On this, see especially the discussion on coherent extendibility, §5.2.3. 
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Under this interpretation of ⇀, Theorem 8.3 would have us represent an agent who prefers 

o1 to (o1 & o2) in a way which only seems appropriate given Indifference to Equivalent 

Conjunctions. GRS1–11 are therefore consistent with a preference set which falsifies a 

central background assumption needed to motivate the theorem itself. Something has 

gone wrong. 

One could introduce a further preference condition to avoid the foregoing worry. The 

weakest condition in the vicinity would be: 

 

If o1 ⊢ o2 and o1, (o1 & o2) ∈ 𝒫, and o2 = P for any P ∈ 𝒫, then o1 ∼ (o1 & o2) 

 

This is not as strong as Indifference to Equivalent Conjunctions, but it would suffice to 

prevent the problematic state of affairs just discussed. However, it’s ad hoc at best. In-

deed, even requiring that P ∼ (P & Q) whenever P ⊢ Q seems an odd restriction to im-

pose—why not go all the way and assume that the agent does not distinguish between P 

and Q for the purposes of decision-making whenever P and Q are logically equivalent? 

After all, even the weaker condition imposes a kind of deductive infallibility upon the 

agent—an ability to always recognise when o1 ⊢ o2 for arbitrary o1 and o2 satisfying the 

relevant conditions—and there seems to be no important difference between this kind of 

infallibility and the more general ability to determine the logical relationships between 

any pair of propositions that might be considered. So it seems that if ⇀ is taken to mean 

⊢, Theorem 8.3 is only plausible for agents who always recognise and assign the same 

utilities and credences to logically equivalent propositions. We are left without a model 

for ordinary agents, who lack such deductive brilliance: in many cases, it might be unob-

vious when o1 ⊢ o2. 

Furthermore, the remarked upon flexibility of ℬel becomes rather odd on this picture. 

If our subject is always able to recognise implication relations, then we might expect her 

credences to satisfy at least monotonicity—but we have seen that ℬel need not be mono-

tonic. It seems implausible to demand in the first place an extraordinary degree of ration-

ality with respect to one domain (≽ and 𝒟es), whilst at the same time representing that 

agent as highly irrational with respect to another closely related domain (ℬel). Inasmuch 

as we need to presuppose that the agent has some special kind of deductively infallibility 

to motivate Theorem 8.1, it had better not be the case that Theorem 8.3’s ℬel and 𝒟es 

functions represent the agent as being logically incompetent! 

The cause of the problem is that Theorem 8.3 should only be used in cases where the 

Naïve Expected Utility formula is descriptively plausible. If P ⇀ Q is taken to mean P ⊢ 

Q, then GRS1 will imply that 𝒢 includes gambles for which the Naïve Expected Utility 

formula is grossly inadequate for less-than-ideal agents. However, if we let P ⇀ Q mean 

that P obviously implies Q, then we might retain the plausibility of Theorem 8.3’s repre-
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sentation without presupposing anything as strong as Indifference to Equivalent Conjunc-

tions, while at the same time distinguish amongst some logically equivalent propositions. 

By ‘P obviously implies Q’, I mean that we can reasonably expect anyone capable of 

entertaining attitudes towards P and Q to recognise that P implies Q. For example, we 

can reasonably expect that anyone who understands P to know that P implies (P & P), 

but it may not be so obvious that P implies (P⟶¬((¬P ∨ Q) & (P & ¬Q))). I will have 

more to say on obvious implication shortly, but for now, let us see what can be done with 

this interpretation of ⇀. 

We will continue to allow that logically equivalent propositions may form different 

elements in 𝒫 and 𝒪, but to avoid the earlier troubles we will assume that the following 

holds for all P, Q ∈ 𝒫 ∪ 𝒪: 

 

Indifference between Obvious Equivalents 

If P ⇌ Q, then (i) P ∼ Q, and (ii) if (o1, P; o2), (o′1, Q; o′2) ∈ 𝒢, then (o1, P; o2) ∼ (o′1, Q; 

o′2) 

 

To be clear, Indifference between Obvious Equivalents is not required to establish Theo-

rem 8.3; in that sense, it is superfluous. Instead, it should be thought of as a restriction on 

the kinds of preference systems to which Theorem 8.3 can be reasonably supposed to 

apply. 

And Indifference between Obvious Equivalents seems like an incredibly plausible as-

sumption, both rationally and descriptively. Roughly, under the present interpretation of 

⇀, Theorem 8.3 says that if P and Q are obviously equivalent, then (i) the agent in ques-

tion is indifferent between P and Q, and (ii) she will also be indifferent between any two 

gambles of the form (o1, P; o2) and (o′1, Q; o′2), as each has a ℬel(P) = ℬel(Q) likelihood 

of resulting in an outcome equal in value to o1 and a (1 – ℬel(P)) = (1 – ℬel(Q)) chance 

of resulting in an outcome equal in value to o2. Or, in more direct terms, she does not 

distinguish between obviously equivalent propositions when forming her preferences over 

𝒢 ∪ 𝒪. We expect that this is how an ordinary agent would treat propositions that she 

recognises as being equivalent, so we can likewise expect that this is how she would treat 

propositions which are obviously equivalent (and hence recognised as such). Even if or-

dinary agents don’t live up to this very weak standard of rationality, it can hardly be 

doubted that they approximate the condition quite closely—and any agent who does not 

even come close to satisfying Indifference between Obvious Equivalents may perhaps be 

too irrational to have coherently measured credences and utilities in any case. 

In the context of the other preference conditions, Indifference between Obvious Equiv-

alents straightforwardly implies that 𝒟es(P) = 𝒟es(Q) and ℬel(P) = ℬel(Q) whenever P 

⇌ Q. Propositions which are not obviously equivalent may, however, be assigned distinct 
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values by ℬel and 𝒟es. We have also assumed that if P ⇀ Q, then P ⇌ (P & Q)—so given 

Indifference between Obvious Equivalents, 

 

If P ⇀ Q, then P ∼ (P & Q) 

 

This is substantially weaker than Indifference to Equivalent Conjunctions. More gener-

ally, we only need to suppose that the agent in question is deductively infallible with 

respect to obvious logical inferences—that is, with respect to the kinds of inferences that, 

by hypothesis, we can expect her to reliably make. Note also that Indifference between 

Obvious Equivalents only forces a kind of preference consistency between gambles con-

ditional on obviously equivalent propositions whenever those gambles have the same or 

equally valued outcomes. Its satisfaction is therefore compatible with a failure to satisfy 

Condition 1, in which case Indifference between Obvious Equivalents implies that 

ℬel*(P) = ℬel*(Q) whenever P ⇌ Q. 

There is, then, the issue of specifying the obvious implication relation. There are clear 

cases in which P obviously entails Q; for instance, that there are dogs obviously implies 

that there are things; and there are dogs and cats obviously implies there are cats. And 

there are clear cases where P does not obviously entail Q; for instance, that there are dogs 

implies that there are infinitely many primes, but this is by no means obvious. And finally, 

there are also cases where an implication may be obvious to some, but not so obvious to 

others. It would be incongruous with characterisational representationism to presuppose 

knowledge of when S recognises that P implies Q—recognition is a kind of doxastic state 

that is far too close to what the characterisational representationist is aiming to explain—

so it seems some notion of objective obviousness may be needed here. 

In specifying ⇀, we may indeed have to impose some specification of obviousness 

from the outside, so to speak. There are some inferences which just are obvious, which 

most people recognise as obvious, and which should be obvious to anybody worthy of 

being called an agent, at least in normal conditions. The most plausible interpretation of 

⇀ is that it represents these inferences. Here, we might appeal to a notion of minimal 

rationality as a constitutive norm of agency: part of what it is for S to be an agent at all is 

for S to be minimally rational, to respond appropriately to the evidence around her, and 

to make rational choices in light of that evidence.97 Plausibly, to say that S is an agent is 

to presuppose that S at least comes close to satisfying some such criterion of rationality, 

at least under normal conditions. It seems only natural, then, that we would also suppose 

her to draw the obvious implications from the propositions she considers and to recognise 

obvious logical equivalences, ceterus paribus.  

 
97 Compare the principle of Charity, §4.2. 



 

196 

 

But we can say a little bit more about ⇀ than just this. In particular, Indifference be-

tween Obvious Equivalents can be reverse-engineered to provide a criterion of adequacy 

for any characterisation of ⇀. Roughly, the idea is that any specification of the obvious 

implication relation had better be such that all (or almost all) of the people in the relevant 

community (have preferences which suggest that they) recognise obvious logical equiv-

alencies. It’s reasonable to suppose that ordinary agents in normal circumstances don’t 

distinguish between propositions that they recognise as being logically equivalent when 

forming their preferences. So, for any proposed specification of the obvious implication 

relation, it ought to be the case that: 

 

P obviously implies Q only if P ⊢ Q, and for all (or most) members of the relevant commu-

nity, P ∼ (P & Q), and if (o1, P; o2), (o′1, (P & Q); o′2) ∈ 𝒢, then (o1, P; o2) ∼ (o′1, (P & Q); 

o′2) 

 

Indeed, if P actually implies Q, and all (or almost all) of the people in the community 

don’t seem to distinguish between P and (P & Q) when forming their preferences, then 

in general the best explanation of this fact would be that P is obviously equivalent to (P 

& Q), and so P obviously implies Q. The restriction to a ‘relevant community’ is intended 

to introduce some flexibility to the specification of ⇀ across different contexts and for 

different subjects. For example, what is obvious to mathematicians may not be obvious 

to the folk; and what is obvious to adults may not be obvious to children. 

8.5 Limiting 𝒢  

It is worth noting, under the proposed interpretation of ⇀, 𝒢 is in certain respects highly 

limited, having been reduced to just those non-trivial two-outcome gambles wherein the 

outcomes obviously imply the conditions under which they obtain. This does not seem to 

make the existential requirements (specifically, GRS2 and GRS10) any more problem-

atic than they would have been had ⇀ been interpreted as ⊢. However, the restriction on 

𝒢 does mean that information about preferences over other types of gambles is effectively 

ignored in the generation of ℬel and 𝒟es—and there are many more possible gambles 

than can be found in 𝒢. For one thing, there are gambles where the outcomes are merely 

consistent with their conditions, but don’t imply them. The preference conditions of The-

orem 8.3 are also consistent with all kinds of preference patterns over various impossible 

gambles. 

Furthermore, there are also gambles to consider which have more than two possible 

outcomes. For instance, suppose that {P1, P2, P3} is a partition of logical space. Nothing 

about Theorem 8.3’s preference conditions implies that the desirability of the slightly 

more complex gamble, (o1, P1; o2, P2; o3, P3), must be a function of ℬel and 𝒟es as derived 
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from the agent’s preferences over two-outcome gambles. In particular, there is nothing to 

ensure that: 

 

𝒟es((o1, P1; o2, P2; o3, P3))  = 𝒟es(o1).ℬel(P1) + 𝒟es(o2).ℬel(P2) +  

 𝒟es(o3).ℬel(P3) 

 

It would be trivial to apply an ad hoc condition which ensures the above representation 

of (o1, P1; o2, P2; o3, P3) and other finitely complex gambles; namely,98 

 

Condition 2: Complex gamble consistency 

For each (o1, P1; …; on, Pn), there is an outcome o′ ∈ 𝒪 such that o′ ∼ (o1, P1; …; on, Pn) 

and 𝒟es(o′) = 𝒟es(o1).ℬel(P1) + … + 𝒟es(o3).ℬel(P3) 

 

As with Condition 1, this is equivalent to some condition stated only in terms of ≽, though 

likely an infinitely complex one. But, besides being ad hoc, the inclusion of Condition 2 

would not alter the fact that ℬel and 𝒟es are derived entirely on the basis of preferences 

between two-outcome gambles. The real problem is not that we have no T-representation 

of ≽ over a space of n-outcome gambles for n > 2, but that whatever representation we 

do have depends on preferences over such a restricted space. 

This kind of limitation is problematic inasmuch as an agent’s preferences over two-

outcome gambles may not line up nicely with her preferences over more complex gam-

bles to be. Suppose, for instance, that S’s preferences for the gambles in 𝒢 satisfy Indif-

ference between Obvious Equivalents, GRS1–11 and Condition 1, in which case it seems 

natural to interpret her as preferring between gambles according to a rule of expected 

utility maximisation with the 𝒟es and ℬel functions thus supplied by Theorem 8.3. How-

ever, suppose also that her preferences for three-outcome gambles, while wildly at odds 

with expected utility maximisation under ℬel and 𝒟es, would be rationalised under ℬel+ 

and 𝒟es+. Which representation is the correct one, if any? Suppose further that her pref-

erences between all three-or-more-outcome gambles would be rational under ℬel+ and 

𝒟es+, and indeed her preferences for two-outcome gambles not in 𝒢 would also be rational 

under ℬel+ and 𝒟es+. Surely, in this case, S’s preferences over the gambles in 𝒢 should 

be seen as an anomaly—whatever her credences and utilities may be, the vast majority of 

her preferences over the gambles outside of 𝒢 would not make sense if we interpret her 

using ℬel and 𝒟es. 

I do not think that either of these issues should be taken to render Theorem 8.3 useless 

for the purposes of characterisational representationism, though they do certainly limit 

the kinds of accounts that might be built upon it. Certainly, we should say that an agent S 

 
98 GRS1 would also need to be altered so as to include these more complex gambles in 𝒢. 
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has credences ℬel and utilities 𝒟es if and only if her preferences over 𝒢 satisfies Indiffer-

ence between Obvious Equivalents, GRS1–11 and Condition 1 in the appropriate way. 

The foregoing discussion suggests that satisfying those conditions should be considered 

neither necessary nor sufficient for having such-and-such credences and utilities. But we 

have already seen reasons for rejecting accounts along these lines (§3.3). Moreover, as 

we noted in §4.1, we should not expect—and it’s no commitment of characterisational 

representationism—that a single representation theorem should do all the definitional 

heavy lifting when it comes to characterising credences and utilities. We can, and in some 

cases should, appeal to information which goes beyond just the agent’s preferences when 

seeking to determine her credences and utilities; a fortiori, we can and should go beyond 

her preferences with regards a restricted space of objects 𝒢.  

The point of characterisational representationism should not be to show how credences 

and utilities simply reduce to a set of preference states and nothing more. They don’t, so 

that project is a dead end. Instead, the most plausible interpretivist and functionalist ap-

proaches to the graded attitudes place a strong emphasis on their connection to prefer-

ences, without that connection being all there is to the possession of credences and utili-

ties. 

Let me put a bit more flesh on these bones. We know that ordinary agents don’t eval-

uate gambles according to the Naïve Expected Utility formula. Suppose instead that when 

they are fully rational—i.e., they’ve thoughtfully considered all the possibilities, worked 

out all the logical relationships, and are free from any interfering influences (intoxication, 

sleep-deprivation, etc.)—then the value that they attach to an arbitrary n-outcome possi-

ble gamble is given by the standard expected utility formula: 

 

𝒟es((oi, Pi; …; on, Pn)) = 𝒟es(oi & Pi).ℬel(Pi) + … + 𝒟es(on & Pn).ℬel(Pn) 

 

But ordinary agents aren’t fully rational, so we should not expect to be able to T-represent 

S’s preferences over the space of all possible gambles 𝒢+ so that they always come out as 

maximising expected utility according to the standard formula relative to some ℬel and 

𝒟es—and if it turns out that we can, then we have good reasons to think that ℬel and 𝒟es 

don’t accurately model her credences and utilities. In short, the determinants of agents’ 

preference patterns are complicated—they are strongly tied to credences and utilities, and 

perhaps more besides, but in ordinary circumstances such connections need not be rigidly 

systematic. 

Suppose, however, that under special conditions, agents reliably have preferences in 

conformity with the standard formula. These are conditions where the agent is free from 

interfering influences, where the objects of preference aren’t particularly complicated, 

and—most importantly—where the relevant logical relationships are all obvious. We 

might then use S’s restricted preferences in these special conditions to solve the problem 
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of separability (§3.1) and help fix upon the contents of her attitudes—at least where those 

preferences can be associated with just one ℬel and 𝒟es assignment consistent with the 

hypothesis that she maximises expected utility. For this, a representation theorem would 

prove useful. 

Thus, I think the best way to justify Theorem 8.3’s emphasis on preferences over the 

simple two-outcome gambles in 𝒢 is that these seem to be the kinds of preferences which 

are most likely to be maximally revealing vis-à-vis the agent’s credences and utilities. 

The gambles in 𝒢 are, in Ramsey’s words, “the sorts of cases with which we are most 

concerned”, where something like expected utility theory is most likely to be descrip-

tively accurate, where a subject’s credences and utilities are most likely to shine through 

in her preferences. We should not commit ourselves to the hypothesis that ordinary agents 

are expected utility maximisers generally, or even very often—in which case, our best 

bet is to narrow our focus to those circumstances where expected utility theory is more 

likely to be correct. 

This is not to say that her preferences over other types of gambles—or any other intu-

itively relevant data, for that matter—should be ignored when trying to assign appropriate 

ℬel and 𝒟es functions to the agent—only that an interpretational priority might be given 

to these rather more straightforward gambles. Theorem 8.3, then, should not be taken to 

give us the whole story about an agent’s credences and utilities and their functional role 

in relation to her preferences: having such-and-such credences and utilities is not simply 

a matter of having preferences which satisfy the stated conditions. But, from the perspec-

tive of deciding upon the contents of those states, it could be said to form a very important 

part. 



 

 

 

 

CHAPTER NINE 

Naturalisation and Characterisational Repre-

sentationism 

The goal of this work was to evaluate the status of characterisational representationism. 

There were two main questions to address. The first was whether, given the kinds of 

representation thoerems presently on offer, characterisational representationism could 

help us to directly advance the naturalisation project by connecting credences and 

utilities to the non-intentional world. The second was whether characterisational repre-

sentationism, in any form, is a viable response to the characterisation project—whether, 

in particular, there is any point to developing representation theorems with the goal of 

understanding what it is to have credences and utilities in mind. 

The Decision-theoretic Interpretation of a representation theorem T tells us that if an 

agent S’s preferences over some collection of basic objects of preference (ℬ𝒪𝒫) satisfies 

a particular set of preference conditions C, then S can be represented as following some 

decision rule ℛ with credences ℬel and utilities 𝒟es. In Chapters 3 and 4, I argued that 

some such theorem T could be the basis for a plausible version of characterisational 

representationism, if it had the appropriate properties. The issue, then, was whether any 

such theorem existed.  

Chapters 5 to 7 surveyed the majority of theorems presently on offer, and found that 

each came up short. Broadly put, there were five basic kinds of issues that were raised, 

clustered around the following themes: 

 

1. Satisfiability: whether T’s preference conditions C (under a reasonable interpretation) are 

typically satisfied (or approximately satisfied) by ordinary agents. 

2. Plausibility: whether, under the condition that S satisfies C, the resulting representation 

of S’s credences (ℬel), utilities (𝒟es), and decision-making procedure (ℛ) is intuitively 

and empirically plausible. 

3. Uniqueness: whether the resulting representation is, in an interesting sense, at least some-

what unique. 

4. Circularity: whether any useful Decision-theoretic Interpretation of T (i.e., an interpreta-

tion of ≽ on ℬ𝒪𝒫) depends on a prior specification of S’s credences and utilities. 
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5. Naturalisability: whether any useful Decision-theoretic Interpretation of T involves an 

unavoidable appeal to some intentional state or other. 

 

Every contemporary representation theorem raised issues of at least one of these kinds, 

and most raised issues of several kinds. 

With respect to conditions the Satisfiability and Plausibility constraints, there are 

frequently expressed concerns that the preference conditions and expected utility models 

associated with CEU theorems in particular are descriptively implausible on the basis of 

decades of empirical research (§3.3.2). Those preference conditions are perhaps more 

plausible for ideally rational agents, but ordinary agents do not seem to satisfy them—at 

least not exactly. Likewise, while it may be plausible that ideally rational agents are 

probabilistically coherent expected utility maximisers, this is far less likely for ordinary 

agents (for whom psychologists have developed a wealth of more empirically successful 

models).  

There are also frequently expressed concerns regarding the appropriate interpretation 

of the uniqueness results that attach to standard CEU theorems. However, as noted in 

§3.2, these concerns apply primarily to a very Naïve version of characterisational repre-

sentationism. The real issue, if there is one, is justifying the appeal to a specific represen-

tation scheme (given by a theorem with sufficiently strong uniqueness conditions). Given 

both the intuitive appeal of expected utility maximisation and the fact that most current 

models of decision-making involve it or something much like it (§3.3.2), this does not 

seem to be a particularly pressing challenge—at least not when placed in comparison with 

the other issues that face the representation theorems we have now. 

My critical discussion tended to generalise away from the issues that face CEU 

theorems specifically, and focused instead on concerns that arise for CEU and NCU 

theorems alike. For theorems developed in the Savage framework, given an interpretation 

of Savage’s act-functions as representing acts, we are faced with the constant acts prob-

lem, which severely curtails the satisfiability of Savage’s preference conditions by any 

agent (§5.2). A similar problem applies to any Savage-like theorem which requires a sim-

ilarly rich space of act-functions (which seems to be all of them). Other interpretations of 

act-functions present their own, distinctive challenges—particularly regarding unique-

ness (§5.2.4). The ℬel functions associated with Savagean theorems are also of limited 

empirical and intuitive plausibility, being (a) in most cases restricted to highly structured 

credence functions, such as probability functions and capacities (§5.5), and (b) unable to 

represent credences towards propositions about acts and (moreover) any proposition spec-

ifying something which is of importance to us which might depend on our acts (§5.3).99 

 
99 Savagean theorems are also, for that matter, generally incapable of representing utilities towards an-

ything other than outcomes—i.e., propositions which are maximally specific with respect to what the agent 

cares about. 
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Finally, it appears to be impossible to specify an adequate interpretation of any Savage-

like theorem without some prior access to subject’s doxastic states (§5.4). 

Theorems within the Anscombe and Aumann paradigm present essentially the same 

difficulties as Savagean theorems, and more besides (§6.1.2). In particular, it’s unlikely 

that ordinary agents even have preferences over lotteries upon lotteries upon lotteries, and 

it’s even more unlikely still that such preferences would play much of a role in fixing 

subjects’ credences and utilities. Furthermore, the essential appeal to ‘objective lotteries’ 

implies that Anscombe and Aumann’s theorem (and any other lottery-based theorem) 

cannot be given an adequate interpretation that is independent of substantive (and empir-

ically dubious) background presuppositions about ordinary agents’ credences. 

Theorems which, like Ramsey’s, rely essentially on ethically neutral propositions, pre-

sent their own unique difficulties (§7.2). To the extent that there are no ethically neutral 

propositions, not even to a reasonable approximation, the preference conditions which 

mention them cannot be (non-trivially) satisfied. Ramsey’s assumption that we have well-

defined preferences over maximally (or near-maximally) specific propositions, and gam-

bles involving such propositions as outcomes, is also highly problematic: the basic objects 

of preference that Ramsey considers seem too specific to even entertain. 

Because Jeffrey appeals directly to mentalistic preferences rather than attempting to 

define ℬel and 𝒟es in terms of choice dispositions, it is possible to specify what it would 

take for S to satisfy his theorem’s preference conditions without prior access to S’s dox-

astic states—though the use of an unreduced intentional notion does raise questions re-

garding the Naturalisability of such theorems (which will be discussed shortly). On the 

other hand, and partly because they have been developed with explicitly normative goals 

in mind, the (very few) monoset theorems which presently exist show substantial room 

for improvement vis-à-vis characterisational representationism (§6.2.2). In particular, 

they (i) place very strong restrictions on preferences, which only seem plausible for ide-

ally rational agents; (ii) are limited to probabilistic ℬel functions, which in most cases 

ranges over an infinite domain of ever-increasingly specific propositions; and (iii) are 

restricted to representing agents as expected utility maximisers across the board. 

Theorem 8.3 is, in very broad terms, an amalgamation of Jeffrey’s and Ramsey’s ideas, 

with some unique features of its own. Ontologically, it is similar to Jeffrey’s, while for-

mally it has more in common with Ramsey’s. It was developed to make some headway 

towards avoiding the Satisfiability, Plausibility, Uniqueness and Circularity issues that 

were raised for earlier theorems. Of particular note is the fact that Theorem 8.3’s ℬel and 

𝒟es functions seem particularly well-suited for the representation of non-ideal agents’ 

credences and utilities, especially in comparison to any of the other theorems discussed 

in previous chapters. The relevant points were summarised in §8.3.2, and I will not repeat 
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them here. I have also argued that the posited decision rule is plausible, given the re-

strictions imposed on 𝒢 and the assumed interpretation of ≽ (§8.1.1).100 

Furthermore, Theorem 8.3 also has the Standard Uniqueness Condition, and, as with 

the monoset theorems, there is no obvious appeal to agents’ credences and/or utilities 

involved in the interpretation of any of the theorem’s primitives. Finally, as I’ve argued 

in §8.2.2 and §8.3.3, Theorem 8.3 (or some weakening thereof) appears to have descrip-

tively reasonable preference conditions—though whether this appearance is accurate is a 

matter for future empirical investigation. To the extent that the conditions do not seem 

reasonable—as, for example, with the rather idealised conditions Condition 1 and 

GRS9—there are still interesting (albeit weaker) representation results which might be 

established in their absence. 

Theorem 8.3 does not present a solution to all of the technical problems facing char-

acterisational representationism—it has only a very limited domain of application, and 

requires still some substantial degree of idealisation within that domain—but it does at 

least suggest that progress can be made towards improving the satisfiability of represen-

tation theorems’ preference conditions to ordinary agents and the plausibility of the re-

sulting representations. If what I have argued in Chapters 3 and 4 is right, then, there is 

motivation to continue developing representation theorems aimed at helping us to 

characterise the credences and utilities of ordinary agents—as a response to the 

characterisation project at least, there is promise in pursuing characterisational 

representationism. 

A question remains regarding the naturalisation project. None of the theorems 

discussed satisfied the Naturalisability constraint. Savage’s, Anscombe and Aumann’s, 

and Ramsey’s theorems exemplify three distinct kinds of framework built around (but not 

necessarily committed to) a behavioural conception of preference, and so offered the best 

hope for naturalisation. In each, the basic objects of preference are generally interpreted 

as objects of choice—i.e., acts, lotteries, and gambles, respectively. In §2.2, I raised some 

problems for the behavioural interpretation of ≽, but even setting those problems aside, I 

have argued that no current representation theorem lends itself to a plausible and natural-

istic interpretation suitable for the purposes of characterisational representationism. The 

basic reason for this was raised in §5.4.2 in relation to Savage’s theorem, but we can see 

now that the point generalises easily. 

In order to derive some unique (or even semi-unique) ℬel and 𝒟es from preferences 

over some collection of objects of choice—whether they be acts, lotteries, or gambles—

those objects must be modelled as having a certain kind of structure, which connects each 

 
100 Because Jeffrey’s theorem does not involve a similar restriction on the domain of its ≽—which is 

simply the set of all propositions towards which the agent has credences and utilities—agents who satisfy 

Jeffrey’s conditions are therefore represented as ℰ𝒰-maximisers across the board, rather than as ℰ𝒰-max-

imisers with respect to a limited domain of choice. 
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one in a unique way to the objects in the domains of ℬel and 𝒟es. For instance, Savage’s 

act-functions are simply functions from states to outcomes; while Ramsey’s gambles are 

just pairings of outcomes with pairs of complementary objects of uncertainty. It is these 

connections which are drawn upon to derive ℬel and 𝒟es—without them, any pattern of 

behavioural preferences could be correlated with any set of credences and utilities we 

like. In all cases, then, the interpretive question arises: should this structure be taken to 

represent the actual properties of the relevant object of choice, or the properties that the 

decision-maker thinks are associated with the options available to her. If we suppose the 

former, then the theorem’s ℬel and 𝒟es are all but guaranteed to be misrepresent the 

subject’s actual credences and utilities. If we suppose the latter, however, then we have 

already given up on a naturalistic interpretation of the theorem in question. 

There is no easy way around this problem, at least given anything like the theorems 

presently on offer. One potential response would be to build in to one’s account a number 

of assumptions about how agents conceptualise their decision situations, which would 

have to be well-motivated and independently plausible. In §5.4.2, I argued that we might 

be able to take this strategy for ideally rational agents, for whom it may be somewhat 

plausible to assume that each act’s actual causal profile is accurately represented using a 

set of highly specific dependency hypotheses as states. But ideally rational agents are 

vastly unlike ordinary agents in the relevant respects, and the latter are likely to vary in 

how they conceptualise their decision situations in highly non-systematic ways. Likewise, 

in applying Ramsey’s system, we might assume that were a subject to be offered a col-

lection of gambles, (i) she would fully understand what she is offered, (ii) would be cer-

tain that the payouts for whatever gamble she accepts will be exactly as described, and 

that (iii) the very presence of the offers would not seriously alter her attitudes. Individu-

ally, each assumption is dubious; in conjunction, they are almost certainly false. 

What remains to be seen is whether mentalistic preferences can be naturalised. I do 

not have a full answer to this question, but I do want to say a few words about how I think 

naturalisation will not be achieved—namely, via their supposedly direct connections with 

behaviour. The problem, of course, is that only a very limited number of mentalistic 

preference states plausibly show any direct connections with behavioural patterns. If the 

goal is to naturalise mentalistic preferences, then we will need to specify what it is for ≽ 

to hold between arbitrary propositions—and in many cases it seems implausible that a 

preference for P over Q will be directly apparent in behaviour independent of assumptions 

regarding beliefs.  

An example will be helpful here. In his (1990), Jeffrey suggested a behavioural 

operationalisation of his use of ≽, given in terms of reactions to news items: 

 

To say that [P] is ranked higher than [Q] [in the agent’s preference ranking] means that the 

agent would welcome the news that [P] is true more than he would the news that [Q] is 

true: [P] would be better news than [Q]. (82) 
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Such an operationalisation cannot underlie a fully naturalistic account of mentalistic 

preference, however, as we can only interpret an agent’s reactions to news items if we 

know how she understands those items—and it does not seem plausible that we could 

have such knowledge without prior access to her doxastic states. (Furthermore, we had 

better hope that the agent hasn’t, for whatever reason, decided to hide her true reactions 

in the hope of misleading us.) 

There is, to be sure, a small subset of propositions such that, if S were to have 

preferences over them, S likely would have a particular pattern of behavioural 

dispositions. As Jeffrey describes them, these are the propositions which specify 

behaviours which the agent can assuredly make true by a pure exercise of the will. Let us 

call these action-propositions. It seems reasonable to suppose that a (mentalistic) 

preference for one action-proposition P over another Q would be directly manifest in 

behaviour: if S prefers P to Q and knows (i.e., with certainty) she can make P true by a 

pure exercise of the will α, and Q true by a pure exercise of the will β, then S should have 

a behavioural preference for α over β.  

Of course, it should not be taken for granted that ordinary agents even have preferences 

over action-propositions—and even supposing that they do, it would be difficult to 

determine which propositions are action-propositions for S without first peaking inside 

her head. (One can presumably be mistaken about what things one can make true by a 

pure exercise of the will.) And, finally, it’s still more difficult to see how S’s mentalistic 

preferences over non-action propositions might be linked to her behaviour without the 

mediation of other mental states. 

It is not clear, then whether mentalistic preferences are readily naturalisable—prefer-

ences probably don’t reduce directly to behaviour, but that was perhaps the wrong place 

to look in any case. Moreover (as the foregoing makes clear) an attempt to cash out the 

mentalistic notion of preference in terms of behaviour seems to require some appeal to a 

background doxastic state, presenting the threat of vicious circularity. As Stalnaker put it 

upon raising an analogous concern for his own account (discussed in §4.4), “Is this theory 

simply a shell game that hides the problem of intentionality under belief [or something 

belief-like] while it explains desire [or something desire-like], and under desire while it 

explains belief?” (1984, 15).  

As Stalnaker tries to do for his account of belief and desire, characterisational repre-

sentationism will need its own way of breaking out of this circle—representation theo-

rems (at least of the kind we have now) won’t let us pin down subjects’ contents through 

sufficient observation of their behavioural dispositions. I have already suggested that cre-

dences should also be understood in terms of their connections with evidence and reason-

ing; in this respect, the functional role semantics suggested in §4.5 is similar to Stal-

naker’s approach for circumventing the circularity issue. But I suspect that more will be 

needed: we should look for a characterisation of (mental) preferences, and one which is 



 

206 

 

not (or not wholly) given in terms of their connection to behaviours. Where naturalisation 

is a key constraint, causal-informational or teleosemantic views may be of use here. Al-

ternatively, one might forego the naturalisation project in favour of a non-reductive char-

acterisation of credences and utilities (e.g., Schwitzgebel 2002, 2013), an approach which 

takes certain intentional states as basic (as Eriksson and Hájek 2007 suggest for 

credences), or an approach which explains the content of preferences via their phenome-

nological connections (cf. Pautz 2013). 

It is in the end therefore unclear whether a version of characterisational representation-

ism based on something like Theorem 8.3 or any ontologically similar theorem will help 

to directly advance the naturalisation project. I would, however, offer a more modest sug-

gestion: whether we eventually find a way to naturalise mentalistic preferences or not, 

having an improved understanding of the connections between them and our credences 

and utilities certain won’t hurt—and it is reasonable to suppose that a representation the-

orem with the right properties could be very useful in developing such an understanding. 



 

 

 

 

 

Appendix A: Proofs 

Theorem 8.1 

The proof of Theorem 8.1 proceeds as follows. First, we show that GRS1–7 jointly entail 

that <𝒪 × 𝒪, ≥d> is an algebraic difference structure, allowing us to invoke Theorem 8.2 

giving us 𝒟es on 𝒪. GRS8 and GRS9 are then used to extend 𝒟es to 𝒪 ∪ 𝒢, and it’s 

shown that this provides us with an interval scale representation of ≽ on 𝒪 ∪ 𝒢.101 

It will be helpful to establish three lemmas first: 

 

Lemma A 

For every pair o1, o2 ∈ 𝒪, there is a (o′1, π; o′2) ∈ 𝒢 

 

1. Follows immediately from GRS1 and GRS2. ■ 

 

We thus know that universally quantified statements about possible gambles conditional 

on some proposition of credence ½ are never trivially satisfied; so, for instance, where a 

step says ‘for all (o′1, π; o′4), (o′2, π′; o′3) ∈ 𝒢, (o′1, π; o′4) ≽ (o′2, π′; o′3)’, Lemma A 

ensures that at least one such pair of gambles exists in 𝒢. I will generally omit this step in 

what follows. Set memberships have been suppressed where obvious: henceforth we are 

only concerned with gambles in 𝒢. 

 

Lemma B 

If (o′1, π; o′4) ≽ (o′2, π′; o′3) for some pair (o′1, π; o′4), (o′2, π′; o′3), then (o1, o2) ≥d (o3, o4) 

 

1. Suppose that (o′1, π; o′4) ≽ (o′2, π′; o′3) for some such pair. 

2. By Lemma A, some (o″4, π″; o″1) exists, and by successive iterations of GRS4, (o′1, π; 

o′4) ∼ (o″4, π″; o″1) and (o″4, π″; o″1) ∼ (o‴1, π‴; o‴4) for all such pairs. Because ∼ is an 

equivalence relation (GRS3), (o1, π; o4) ∼ (o‴1, π‴; o‴4) for all such pairs. 

3. By the same steps, we know that (o′2, π′; o′3) ∼ (o″2, π*; o″3) for all such pairs. 

 
101 Several of the steps in what follows owe much to (Bradley 2001), especially Lemma C and the steps 

involving it. 
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4. So given our starting supposition, (o‴1, π‴; o‴4) ≽ (o″2, π*; o″3) for all such pairs, which 

is just the right hand side of Definition 8.2. ■ 

 

Lemma C 

If (o1, o2) ≥d (o3, o4), then (o4, o3) ≥d (o2, o1), and (o1, o3) ≥d (o2, o4) 

 

1. Suppose (o1, o2) ≥d (o3, o4), so (o′1, π; o′4) ≽ (o′2, π′; o′3) for all such gambles. 

2. Lemma A ensures some (o″4, π*; o″1), (o″3, π+; o″2) exist, and by GRS4, (o″4, π*; o″1) ∼ 

(o′1, π; o′4) and (o″3, π+; o″2) ∼ (o′2, π′; o′3). Substituting for equally valued gambles, we 

get (o″4, π*; o″1) ≽ (o″3, π+; o″2), which given Lemma B implies (o4, o3) ≥d (o2, o1). 

3. Likewise, (o′1, π; o′4) ≽ (o″3, π+; o″2), so (o1, o3) ≥d (o2, o4). ■ 

 

We can now show that ADS1–5 follow from GRS1–7. ADS2 is simply the first part of 

Lemma C. Next we will prove that ≥d on 𝒪 × 𝒪 is complete: 

 

1. From Lemma A, for any two (o1, o4), (o2, o3), there exist (o′1, π; o′4), (o′2, π′; o′3). From 

GRS3, either (o′1, π; o′4) ≽ (o′2, π′; o′3) or (o′2, π′; o′3) ≽ (o′1, π; o′4). 

2. Given Lemma B, if the former then (o1, o2) ≥d (o3, o4), and if the latter then (o3, o4) ≥d (o1, 

o2). So either (o1, o2) ≥d (o3, o4) or (o3, o4) ≥d (o1, o2). ■ 

 

We also prove that ≥d on 𝒪 × 𝒪 is transitive: 

 

1. Suppose that (o1, o2) ≥d (o3, o4) and (o3, o4) ≥d (o5, o6). 

2. From Definition 8.2, for all the relevant gambles, this implies that (o′1, π; o′4) ≽ (o′2, π′; 

o′3) and (o′3, π*; o′6) ≽ (o′4, π+; o′5). 

3. For any pair of gambles (o″1, π″; o″6), (o″2, π‴; o″5), GRS5 then requires that (o″1, π″; o″6) 

≽ (o″2, π‴; o″5), and (o1, o2) ≥d (o5, o6) follows from Lemma B. ■ 

 

So ≥d on 𝒪 × 𝒪 is a weak ordering and ADS1 is satisfied. Next we show that ADS3 is 

satisfied: 

 

1. Suppose (o1, o2) ≥d (o4, o5) and (o2, o3) ≥d (o5, o6). 

2. The second part of Lemma C applied to each conjunct entails (o1, o4) ≥d (o2, o5) and (o2, 

o5) ≥d (o3, o6). Because ≥d is transitive, (o1, o4) ≥d (o3, o6). So from Lemma C again, (o1, 

o3) ≥d (o4, o6). ■ 

 

ADS4 is satisfied: 

 

1. Suppose (o1, o2) ≥d (o3, o4) ≥d (o1, o1). 
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2. From GRS6, for every triple o1, o3, o4, there is a o5 such that for some (o′1, π; o′4), (o5, π′; 

o′3) (ensured by Lemma A), (o′1, π; o′4) ∼ (o5, π′; o′3). Applying Lemma B, we see that 

there must be a o5 such that (o1, o5) =d (o3, o4). 

3. Likewise, for every triple o3, o4, o2, there is a o6 such that (o′3, π; o′2) ∼ (o6, π′; o′4) for 

some such pair; so there is a o6 such that (o3, o4) =d (o6, o2). ■ 

 

And ADS5 is also satisfied. The proof of this is trivial given GRS7, Definition 8.2, and 

the definition of a strictly bounded standard sequence; it has therefore been left unstated. 

GRS1–7 therefore imply that <𝒪 × 𝒪, ≥d> is an algebraic difference structure, which en-

sures the existence of the appropriate 𝒟es on 𝒪 (unique up to positive linear transfor-

mation), such that: 

 

(o1, o2) ≥d (o3, o4) iff 𝒟es(o1) – 𝒟es(o2) ≥ 𝒟es(o3) – 𝒟es(o4)  

 

We appeal primarily to GRS8 to show that 𝒟es(o1) ≥ 𝒟es(o2) iff o1 ≽ o2: 

 

1. From GRS8, o′1 ∼ o1 iff, for all (o″1, P; o‴1), o1 ∼ (o″1, P; o‴1); and similarly, o′2 ∼ o2 iff, 

for all (o″2, P; o‴2), o2 ∼ (o″2, P; o‴2). 

2. Given GRS3 then, o1 ≽ o2 iff (o″1, π; o‴1) ≽ (o″2, π′; o‴2) for all such gambles, which 

holds iff (o1, o2) ≥d (o2, o1). 

3. From Theorem 8.2, (o1, o2) ≥d (o2, o1) iff 𝒟es(o1) – 𝒟es(o2) ≥ 𝒟es(o2) – 𝒟es(o1), which 

can only be if 𝒟es(o1) ≥ 𝒟es(o2). So o1 ≽ o2 iff 𝒟es(o1) ≥ 𝒟es(o2). ■ 

 

We further require that 𝒟es is defined on 𝒪 ∪ 𝒢. From GRS9, we know that for every (o1, 

P; o2) there is a o3 such that (o1, P; o2) ∼ o3. We can achieve the desired extension by 

making the following stipulation: 

 

For all o3, (o1, P; o2) ∈ 𝒪 ∪ 𝒢, 𝒟es((o1, P; o2)) = 𝒟es(o3) iff (o1, P; o2) ∼ o3 

 

The proof that condition (i) of Theorem 8.1 then holds is trivial and left unstated. The 

uniqueness properties of 𝒟es on 𝒪 will also clearly hold for 𝒟es on 𝒪 ∪ 𝒢. The foregoing 

thus establishes Theorem 8.1. 

Theorem 8.3 

To prove Theorem 8.3, we need to show that Definition 8.7 provides us with a unique 

function ℬel that satisfies the stated properties. To begin with, I will prove that ℬel is a 

credence function defined for all P ∈ 𝒫. 
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1. That for each P ∈ 𝒫 we will always be able to find outcomes and gambles satisfying 

Definition 8.7’s conditions follows immediately from GRS1 and GRS10. 

2. That ℬel(P) is independent of the choice of outcomes and gambles satisfying the ante-

cedent conditions follows immediately from Condition 1. 

3. The range of ℬel is [0, 1]: from GRS8 and GRS3, for all (o1, P; o2), either o1 ≽ o2 and o1 

≽ (o1, P; o2) ≽ o2, or o2 ≽ o1 and o2 ≽ (o1, P; o2) ≽ o1. Given the established properties of 

𝒟es, we know 𝒟es((o1, P; o2)) always sits somewhere weakly between 𝒟es(o1) and 

𝒟es(o2). It follows that the ratio of the difference between 𝒟es((o1, P; o2)) and 𝒟es(o2) 

and the difference between 𝒟es(o1) and 𝒟es(o2) will always be within [0, 1]. ■ 

 

We can now prove condition (iii), i.e., 𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) + 𝒟es(o2). (1 – 

ℬel(P)): 

 

1. Suppose first that o1 ∼ o2; then, by reasoning noted above, 𝒟es(o1) = 𝒟es(o2) = 𝒟es((o1, 

P; o2)). Let 𝒟es(o1) = x. The required equality then holds iff x = x.ℬel(P) + x.(1 – ℬel(P)); 

we have already noted that ℬel(P) ∈ [0, 1], so this can be assumed regardless of the value 

of ℬel(P). 

2. Suppose next that ¬(o1 ∼ o2). From Definition 8.7, ℬel(P) = (𝒟es((o1, P; o2)) – 𝒟es(o2)) / 

(𝒟es(o1) – 𝒟es(o2)), which holds iff  

(𝒟es(o1) – 𝒟es(o2)).ℬel(P) = 𝒟es((o1, P; o2)) – 𝒟es(o2) iff  

𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) – 𝒟es(o2).ℬel(P) + 𝒟es(o2) iff  

𝒟es((o1, P; o2)) = 𝒟es(o1).ℬel(P) + 𝒟es(o2).(1 – ℬel(P)). ■ 

 

If GRS11 holds, then condition (iv), that ℬel(P) = 1 – ℬel(¬P), holds.102 

 

1. As already shown, for all P ∈ 𝒫, there is some (o1, P; o2) such that the ratio (𝒟es((o1, P; 

o2)) – 𝒟es(o2)) / (𝒟es(o1) – 𝒟es(o2)) is defined (i.e. such that ¬(o1 ∼ o2)); from the fore-

going proofs, this ratio is the value of ℬel(P). 

2. From GRS1 and since 𝒫 is closed under negation, if (o1, P; o2) is in 𝒢 then (o2, ¬P; o1) is 

in 𝒢; thus ℬel(¬P) = (𝒟es((o2, ¬P; o1)) – 𝒟es(o1)) / (𝒟es(o2) – 𝒟es(o1)). 

3. Multiplying the denominator and the numerator by –1 gets us ℬel(¬P) = (𝒟es(o1) – 

𝒟es((o2, ¬P; o1))) / (𝒟es(o1) – 𝒟es(o2)). 

4. GRS11 ensures (o1, P; o2) ∼ (o2, ¬P; o1), so 𝒟es((o1, P; o2)) = 𝒟es((o2, ¬P; o1)). 

5. Let 𝒟es((o1, P; o2)) = x. Given the foregoing, ℬel(P) + ℬel(¬P) is equal to: 

((x – 𝒟es(o2)) / (𝒟es(o1) – 𝒟es(o2))) + ((𝒟es(o1) – x) / (𝒟es(o1) – 𝒟es(o2))) 

= (x – o2 + o1 – x) / (o1 – o2) = (x – x + o1 – o2) / (o1 – o2) 

= (o1 – o2) / (o1 – o2) = 1. Condition (iv) follows immediately. ■ 

 

Finally, ℬel is unique: 

 
102 Thanks to Rachael Briggs for the main outline of the following proof. 
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1. From the earlier proofs and the fact that ratios of differences are preserved across admis-

sible transformations of 𝒟es, we know that there is only one function ℬel on 𝒫 such that 

ℬel(𝒪) = 1, ℬel(∅) = 0, and for any contingent P, if o1, o2 are such that ¬(o1 ∼ o2) and (o1, 

P; o2), then ℬel(P) = 𝒟es((o1, P; o2)) – 𝒟es(o2) / 𝒟es(o1) – 𝒟es(o2). 

2. We have also already established that the previous equality holds iff 𝒟es((o1, P; o2)) = 

𝒟es(o1).ℬel(P) – 𝒟es(o2).ℬel(P) + 𝒟es(o2). Since there is only one function satisfying the 

left-hand side, only one satisfies the right-hand side. ■ 

 



 

 

 

 

 

Appendix B: Varieties of Savagean Theorem 

In this appendix, I will briefly outline four important examples of representation theorems 

developed within the Savage paradigm. The first is Luce and Krantz’s conditional ex-

pected utility theory (a variation on classical expected utility theory), and the following 

three are recent important NCU theorems. Besides the theorems discussed here, other 

examples of NCU theorems within the Savage paradigm can be found in (Schmeidler 

1989), (Wakker 1989), (Sarin and Wakker 1992), (Machina and Schmeidler 1992), 

(Casadesus-Masanell, Klibanoff et al. 2000), (Ghirardato, Maccheroni et al. 2003), and 

(Qu 2015). 

Luce and Krantz (1971) suggest that a major problem with Savage’s theorem is that 

his act-functions are defined for all states, which leads to the constant acts problem to be 

discussed below. Consequently, Luce and Krantz attempt to develop a representation the-

orem over a much more limited set of act-functions, which we will designate 𝒜LK. We 

begin with a set of states 𝒮 and outcomes 𝒪, however the states in 𝒮 need not be (and in 

general will not be) independent of all the available acts. ℰ is the set of all subsets of 𝒮, 

and a set 𝒩 of null events is defined. An act-function ℱ ∈ 𝒜LK is then a function from a 

non-null event into 𝒪. Essentially, every ℱ ∈ 𝒜LK is simply a restriction of one of Sav-

age’s total act-functions to some non-null event. 

In order to ensure that ≽ on 𝒜LK has a rich enough structure to underlie their desired 

representation, Luce and Krantz need to assume the following three structural conditions: 

 

If E* ⊂ E and E* ∉ 𝒩, then ℱE ∈ 𝒜LK iff ℱE* ∈ 𝒜LK 

If (E ∩ E*) = ∅, then, if ℱE, 𝒢E* ∈ 𝒜LK, then ℱE ∪ 𝒢E* ∈ 𝒜LK  

For all ℱE ∈ 𝒜LK and any E* ∈ ℰ – 𝒩, there is a 𝒢E* ∈ 𝒜LK such that 𝒢E* ∼ ℱE 

 

Luce and Krantz are then able to prove that if ≽ on 𝒜LK satisfies their stated preference 

conditions (CLK), then there will exist a finitely additive probability function ℬel on ℰ and 

a 𝒟es: 𝒜LK ↦ ℝ, such that: 

 

(i) E ∈ 𝒩 iff ℬel(E) = 0 

(ii) ℱE ≽ 𝒢E* iff 𝒟es(ℱE) ≥ 𝒟es(𝒢E*) 

(iii) If (E ∩ E*) = ∅, 𝒟es(ℱE ∪ 𝒢E*) = 𝒟es(ℱE).ℬel(E|E ∪ E*) + 𝒟es(𝒢E*). ℬel(E*|E ∪ E*) 
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Furthermore, they show that ℬel is unique and 𝒟es is unique up to positive linear trans-

formation. They also note that while the domain of their 𝒟es function is 𝒜LK, it’s possible 

to add two further preference conditions to their original theorem which allows for a 𝒟es 

function on 𝒪 and a slightly different expected utility representation of ≽ on a subset of 

𝒜LK. Satisfaction of the two further conditions, however, requires readmitting constant 

act-functions into the space of act-functions over which ≽ is defined. 

Lara Buchak’s (2013, 2014) theorem for risk-weighted expected utility theory also 

builds on essentially the same resources as Savage’s theorem, with ≽ being defined on 

the set of all finitely-valued act-functions in 𝒪𝒮. However, by setting different preference 

conditions CREU on ≽ than Savage does, she arrives at a wholly distinct form of represen-

tation that involves a probability function ℬel, a utility function 𝒟es, and a so-called risk 

function, ℛ, which is intended to reflect the degree to which an agent is risk averse. A 

function ℛ: [0, 1] ↦ [0, 1] is a risk function iff:  

 

ℛ(0) = 0 

ℛ(1) = 1 

If n ≤ m, then ℛ(n) ≤ ℛ(m) 

If n < m, then ℛ(n) < ℛ(m) 

 

Buchak is able to prove that if the conditions CREU are satisfied, then there exists a finitely 

additive probability function ℬel on ℰ, a risk function ℛ, and a real-valued function 𝒟es 

on 𝒪, that together determine a risk-weighted expected utility (ℛeu) function to represent* 

≽ on all finite-valued act-functions in 𝒜, where ℛeu is defined as follows: for every ℱ ∈ 

𝒜, ℱ = (Ei, oi│…│En, on), 

 

ℛeu(ℱ) =  𝒟es(o1) + ℛ(∑  𝑛
𝑖=2  ℬel(Ei)).(𝒟es(o2) – 𝒟es(o1)) + ℛ(∑  𝑛

𝑖=3 ℬel(Ei)). (𝒟es(o3) – 

𝒟es(o2)) + … + ℛ(ℬel(En)).(𝒟es(on) – 𝒟es(on–1)) 

 

Given conditions CREU, it then follows that 

 

ℱ ≽ 𝒢 iff ℛeu(ℱ) ≥ ℛeu(𝒢) 

 

Furthermore, ℛ is unique, while ℬel and 𝒟es have the Standard Uniqueness Condition. 

Buchak’s theorem was developed with normative considerations in mind, hence the will-

ingness to adopt a probabilistically coherent credence function ℬel. The addition of a risk 

function is motivated by normative considerations, which suggest that CEU inadequately 

deals with rational attitudes towards risky prospects. 
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On the other hand, cumulative prospect theory (Tversky and Kahneman 1992, Wakker 

and Tversky 1993) was developed with explicitly descriptive aspirations, being primarily 

a response to the empirical evidence that ordinary agents often fail to be rational in vari-

ous ways. This theory takes some work to spell out. Suppose, first of all, that a given 

element os of 𝒪 can be designated as the status quo—that is, os is the outcome in which 

nothing of interest to the decision-maker changes. An outcome o is then considered pos-

itive iff the constant act-function for o is considered strictly preferable to the constant act-

function for os; i.e., o is positive iff o ≻ os. These outcomes are considered to be gains 

from the decision-maker’s perspective. Likewise, o is negative iff os ≻ o. These outcomes 

are then to be considered losses. As with Savage’s act-functions, each act-function in 

cumulative prospect theory can be represented using the general form as a sequence of 

pairs of events and outcomes, but with one small notational difference: the outcomes 

should always be arranged from negative to positive, in increasing order. So, every act-

function can be represented by (E–m, o–m│…│Ei, oi│…│En, on) where the set {E–m, …, Ei, 

…, En} is a partition of 𝒮, and the outcomes o–m to on are arranged such that oi comes after 

oj iff oi ≻ oj. Let ℱ(Ei) = ℱ(s), for any s ∈ Ei. 

Next, for any act-function ℱ, we can define the positive part of ℱ, or ℱ+, as follows: 

 

ℱ+(s) = ℱ(s) if ℱ(s) is positive, and os otherwise 

 

In other words, the positive part of ℱ is an act-function ℱ+ which is the same as ℱ for all 

states s where ℱ maps s to a positive outcome, but maps all other states to the status quo. 

The negative part of ℱ, or ℱ–, is given a similar definition, mutatis mutandis. The purpose 

of dividing an act-function into its positive and negative parts is so that we can treat the 

valuation of the two parts differently. In particular, a representation theorem for cumula-

tive prospect theory says that if its preference conditions (CCPT) are satisfied by ≽ on 𝒜, 

then there will be a strictly increasing utility function 𝒟es satisfying 𝒟es(os) = 0, unique 

up to a positive multiplicative constant, and two unique capacities 𝒲+ and 𝒲–, such that 

for ℱ = (E–m, o–m│…│ Ei, oi│…│En, on), and –m ≤ i ≤ n, 

 

𝒞pt(ℱ) = 𝒞pt(ℱ+) + 𝒞pt(ℱ–) 

 

Where the two parts, 𝒞pt(ℱ+) and 𝒞pt(ℱ–), are defined as: 

 

𝒞pt(ℱ+) = ∑  𝑛
𝑖=0 πi

+.𝒟es(ℱ(Ei)), 

𝒞pt(ℱ–) = ∑  0
𝑖=−𝑚 πi

–.𝒟es(ℱ(Ei)) 

 

And: 
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ℱ ≽ 𝒢 iff 𝒞pt(ℱ) ≥ 𝒞pt(𝒢) 

 

The so-called decision-weights, π+ = (π0
+, …, πn

+) and π– = (π–m
+, …, π0

+), are then de-

fined: 

 

πn
+  = 𝒲+(En) 

πi
+  = 𝒲+(Ei ∪ … ∪ En) – 𝒲+(Ei+1 ∪ … ∪ En), for 0 ≤ i ≤ n – 1 

π–m
– = 𝒲–(E–m) 

πi
–  = 𝒲–(E–m ∪ … ∪ Ei) – 𝒲–(E–m ∪ … ∪ Ei–1), for 1–m ≤ i ≤ 0 

 

If it’s now supposed that πi = πi
+ whenever i ≥ 0, and πi = πi

– whenever i < 0, then 𝒞pt can 

be simplified to: 

 

𝒞pt(ℱ) = ∑  𝑛
𝑖=−𝑚 πi.𝒟es(ℱ(Ei))  

 

Kahneman and Tversky are quick to point out that their ‘decision weight’, π, is not to 

be interpreted as a representation of credences: 

 

Consider a gamble in which one can win 1,000 [dollars] or nothing, depending on the toss 

of a fair coin. For any reasonable person, the probability of winning is .50 in this situation 

[…] however, the decision weight […] which is derived from [his] choices is likely to be 

smaller than ½. Decision weights measure the impact of events on the desirability of pro-

spects [i.e., acts], and not merely the perceived likelihood of these events. (1979, 280) 

 

It has often been supposed that decision weights represent the composition of two distinct 

psychological factors: the agent’s credences and the agent’s attitudes towards decision-

making in general—such as their attitudes towards risk and loss. See, for example, 

(Fellner 1961), (Tversky and Fox 1995), (Fox, Rogers et al. 1996), (Fox and Tversky 

1998), (Gonzalez and Wu 1999), (Kilka and Weber 2001), and (Abdellaoui, Vossmann 

et al. 2005). Wakker (2004) attempts a decomposition of these decision weights into these 

two factors “based solely on observable [i.e., behavioural] preference” (236). 

The final example of an NCU theorem within the Savage paradigm is the recent max-

min expected utility theorem of Alon and Schmeidler (2014). Maxmin theories tell us that 

in cases of uncertainty, the preferred option is (or should be) the option(s) with the best 

worst potential outcome—thus, by selecting that option, the agent guarantees that if even 

if that choice results in its least valuable outcome obtaining, that outcome is still at least 

as good as the worst outcome of any of the other available options. Alon and Schmeidler 

prove that if their conditions CMEU are satisfied by ≽ on the set of all finitely valued act-

functions in 𝒜, then there will exist a continuous utility function 𝒟es on 𝒪, and a non-

empty, closed and convex set ℬ of probability functions 𝒫r defined on ℰ, such that: 
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ℱ ≽ 𝒢 iff 𝑚𝑖𝑛
𝑃𝑟∈𝑩

 ∫  
 

𝑠
𝒟es(ℱ(.)) d 𝒫r ≥ 𝑚𝑖𝑛

𝑃𝑟∈𝑩
 ∫  

 

𝑠
𝒟es(𝒢(.)) d 𝒫r 

 

They also show that 𝒟es is unique up to positive linear transformation, the set ℬ is unique, 

and for some event E ∈ ℰ,  

 

0 < 𝑚𝑖𝑛
𝑃𝑟∈𝑩

 𝒫r(E) < 1 
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